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0.1 Introduction

Following a slow (and forced) evolution in the history of mathematics, the modern notion of func-
tion (due to Dirichlet, 1837) has been made independent of any actual description format. A similar
process has led André Joyal [158] to introduce in combinatorics the notion of “Species” to make the
description of structures independent of any specific format. The theory serves as an elegant “ex-
planation” for the surprising power of generating function uses for the solution of structure enumer-
ation. During the last decades considerable progress has been made in clarifying and strengthening
the foundations of enumerative combinatorics. A number of useful theories, especially to explain al-
gebraic techniques, have emerged. We mention, among others, Möbius Inversion (Rota [284], Rota–
Smith [289], Rota–Sagan [288]), Partitional Composition (Cartier–Foata [45], Foata [106, 112]),
Prefabs (Bender–Goldman [11]), Reduced Incidence Algebras (Mullin–Rota [253], Doubilet, Rota,
and Stanley [80], Dür [84]), Binomial Posets and exponential structures (Stanley [301, 300]), Möbius
categories (Content–Lemay–Leroux [66], Leroux [212, 214]), Umbral Calculus and Hopf Algebras
(Rota [286], Joni–Rota [157]), Pólya Theory (Pólya [263], Redfield [275], de Bruijn [68], Robin-
son [282]), and Species of Structures (Joyal [158]). Many authors have also underlined the impor-
tance of these methods to solve problems of enumeration, in particular, Bender–Williamson [12],
Berge [13], Comtet [58], Flajolet [91], Goulden–Jackson [133], Graham–Knuth–Patashnik [136],
Kerber [170], Harary–Palmer [144], Knuth [172], Liu [222], Riordan [281], Moon [251], Sagan [290],
Stanley [304, 302], Stanton–White [306], van Lint–Wilson [316], Wehrhahn [324], and Wilf [326].

In addition, during this same period, the subject has been greatly enriched by its interaction
with algebra and theoretical computer science as a source of application and motivation. The impor-
tance of combinatorics for the analysis of algorithms and the elaboration of efficient data structures,
is established in the fundamental book of Knuth [172]. A good knowledge of combinatorics is now
essential to the computer scientist. Of particular importance are the following areas: formal lan-
guages, grammars and automata theory (see for instance Berstel–Reutenauer [30], Eilenberg [88],
Greene [137], Lothaire [227], Reutenauer [276, 277], and the work of Schützenberger, Cori, Vien-
not and the Bordeaux School); asymptotic analysis and average case complexity (see Bender [9],
Bender–Canfield [10]), Flajolet–Odlyzko [97], Flajolet–Salvy–Zimmermann [99], and Knuth [172],
and Sedgewick–Flajolet [295]; and combinatorics of data structures (see Aho–Hopcroft–Ullman [1],
Baeza-Yates–Gonnet [5], Brassard–Bratley [38], Mehlhorn [244], and Williamson [329]).

The combinatorial theory of species, introduced by Joyal in 1980, is set in this general frame-
work. It provides a unified understanding of the use of generating series for both labeled and
unlabeled structures, as well as a tool for the specification and analysis of these structures. Of
particular importance is its capacity to transform recursive definitions of (tree-like) structures into
functional or differential equations, and conversely. Encompassing the description of structures
together with permutation group actions, the theory of species conciliates the calculus of gener-
ating series and functional equations with Pólya theory, following previous efforts to establish an
algebra of cycle index series, particularly by de Bruijn [68] and Robinson [282]. This is achieved
by extending the concept of group actions to that of functors defined on groupoids, in this case
the category of finite sets and bijections. The functorial concept of species of structures goes back
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to Ehresmann [87]. The functorial property of combinatorial constructions on sets is also pointed
out in a paper of Mullin and Rota [253] in the case of reluctant functions, a crucial concept for
the combinatorial understanding of Lagrange inversion. There are also links between the algebra
of operations on species and category theory. For example, the partitional composition of species
can be described in the general settings of doctrines (see Kelly [166]), operads (see May [233] and
Loday [224]), and analytic functors (see Joyal [163]).

Informally, a species of structures is a rule, F , associating with each finite set U , a finite set
F [U ] which is “independent of the nature” of the elements of U . The members of the set F [U ],
called F -structures, are interpreted as combinatorial structures on the set U given by the rule F .
The fact that the rule is independent of the nature of the elements of U is expressed by an invariance
under relabeling. More precisely, to any bijection σ : U −→ V , the rule F associates a bijection
F [σ] : F [U ] −→ F [V ] which transforms each F -structure on U into an (isomorphic) F -structure on
V . It is also required that the association σ 7→ F [σ] be consistent with composition of bijections.
In this way the concept of species of structures puts as much emphasis on isomorphisms as on the
structures themselves. In categorical terms, a species of structures is simply a functor from the
category B of finite sets and bijections to itself.

As an example, the class G of simple (finite) graphs and their isomorphisms, in the usual sense,
gives rise to the species of graphs, also denoted G. For each set U , the elements of G[U ] are just
the simple graphs with vertex set U . For each σ : U −→ V , the bijection G[σ] : G[U ] −→ G[V ]
transforms each simple graph on U into a graph on V by relabeling via σ. Similarly, any class of
discrete structures closed under isomorphisms gives rise to a species.

Furthermore, species of structures can be combined to form new species by using set theoretical
constructions. There results a variety of combinatorial operations on species, including addition,
multiplication, substitution, derivation, etc, which extend the familiar calculus of formal power
series. Indeed to each species of structures, we can associate various formal power series designed
to treat enumeration problems of a specific kind (labeled, unlabeled, asymmetric, weighted, etc.).
Of key importance is the fact that these associated series are “compatible” with operations on
species. Hence each (algebraic, functional or differential) identity between species implies identities
between their associated series. This is in the spirit of Euler’s method of generating series.

For example, let a denote the species of trees (acyclic connected simple graphs) and A, that
of rooted trees (trees with a distinguished vertex). Then the functional equation

A = X E(A), (1)

expresses the basic fact that any rooted tree on a finite set U can be naturally described as a root
(a vertex x ∈ U) to which is attached a set of disjoint rooted trees (on U \ {x}), see Figure 2.9.
Equation (1) yields immediately the following equalities between generating series

A(x) = x eA(x), T (x) = x exp(
∑
k≥0

T (xk)

k
).

These formulas go back to Cayley [46] and Pólya [263]. The first refers to the exponential generating
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series A(x) =
∑

n≥0 an x
n/n!, where an is the number of rooted trees on a set of n elements (labeled

rooted trees), and yields Cayley’s formula an = nn−1 via the Lagrange inversion formula. The
second refers to the ordinary generating series T (x) =

∑
n≥0 Tn x

n, where Tn is the number of
isomorphism types of rooted trees (unlabeled rooted trees) on n elements, and yields a recurrence
formula for these numbers.

Analogously, the identity

2(n− 1)nn−2 =
n−1∑
k=1

(
n

k

)
kk−1(n− k)n−k−1,

and Otter’s formula [259]

t(x) = T (x) +
1

2
(T (x2)− T 2(x)),

where t(x) =
∑

n≥1 tn x
n is the ordinary generating series of the number tn of unlabeled trees on n

elements, both follow from the species isomorphism

A+ E2(A) = a +A2,

allowing us to express the species a of trees as a function of the species of rooted trees. We
call this identity the dissymmetry theorem for trees (see Leroux [213], Leroux and Miloudi [215]).
It is inspired from the dissimilarity formula of Otter [259] and the work of Norman [257] and
Robinson [282] on the decomposition of graphs into 2-connected components.

Since its introduction, the theory of species of structures has been the focus of considerable
research by the Montréal school of combinatorics as well as numerous other researchers. The goal
of this text is to present the basic elements of the theory, and to give a unified account of some of
it’s developments and applications.

Chapter 1 contains the first key ideas of the theory. A general discussion on the notion of
discrete structures leads naturally to the formal definition of species of structures. Some of the
basic formal power series associated to a species F are introduced: the (exponential) generating
series F (x) for labeled enumeration, the type generating series F̃ (x) for unlabeled enumeration, and
the cycle index series ZF (x1, x2, x3, . . .) as a general enumeration tool. Finally, we introduce the
combinatorial operations of addition, multiplication, substitution (partitional composition) and
derivation of species of structures. These operations extend and interpret in the combinatorial
context of species the corresponding operations on formal power series.

Chapter 2 begins with an introduction to three other operations: pointing, cartesian product
and functorial composition. Pointing is a combinatorial analogue of the operator x(d/dx) on series.
The cartesian product, consisting of superposition of structures, corresponds to the Hadamard
product of series (coefficient-wise multiplication). Functorial composition, not to be confused with
substitution, is the natural composition of species considered as functors (see Décoste–Labelle–
Leroux [74]). Many species of graphs and multigraphs can be expressed easily by this operation.
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The theory is then extended in Chapter 3 to weighted species where structures are counted
according to certain parameters, and to multisort species in analogy with functions of several
variables. These generalizations broaden the range of applications to more refined enumeration
problems.

For example, the generating series for Laguerre polynomials,

∑
n≥0

L(α)
n (t)

xn

n!
=

(
1

1− x

)α+1

exp

(
−t x

1− x

)
.

suggests a combinatorial “model” for these polynomials, consisting of permutations (with cycle
counter α+ 1) and oriented chains (each with weight −t). This model gives rise to a combinatorial
theory of Laguerre polynomials, where identities appear as consequences of elementary construc-
tions on discrete structures. The same approach can be applied to many other families of polyno-
mials. See, for example, Bergeron [20], Dumont [83], Foata [107, 109], Foata–Labelle [110], Foata–
Leroux [111], Foata–Schützenberger [112], Foata–Strehl [113, 114], Foata–Zeilberger [115], Labelle–
Yeh [202, 204, 208], Leroux–Strehl [216], Strehl [308, 309, 310], Viennot [319], and Zeng [340].
Following those lines, the tex contains a combinatorial treatment of Eulerian, Hermite, Laguerre,
and Jacobi polynomials.



Chapter 1

Introduction to Species of Structures

This chapter contains the basic concepts of the combinatorial theory of species of structures. It is
an indispensable starting point for the developments and applications presented in the subsequent
chapters. We begin with some general considerations on the notion of structure, everywhere present
in mathematics and theoretical computer science. These preliminary considerations lead us in a
natural manner to the fundamental concept of species of structures. The definition of species puts
the emphasis on the transport of structures along bijections and is due to C. Ehresmann [87], but
it is A. Joyal [158] who showed its effectiveness in the combinatorial treatment of formal power
series and for the enumeration of labelled structures as well as unlabeled (isomorphism types of)
structures.

We introduce in Section 1.2 some of the first power series that can be associated to species: gen-
erating series, types generating series, cycle index series. They serve to encode all the information
concerning labelled and unlabeled enumeration.

1.1 Species of Structures

The concept of structure is fundamental, recurring in all branches of mathematics, as well as in
computer science. From an informal point of view, a structure s is a construction γ which one
performs on a set U (of data). It consists of a pair s = (γ, U). It is customary to say that U is the
underlying set of the structure s or even that s is a structure constructed from (or labelled by) the
set U . Figure 1.1 depicts two examples of structures: a rooted tree and an oriented cycle. In a set
theoretical fashion, the tree in question can be described as s = (γ, U), where

U = {a, b, c, d, e, f},
γ = ({d}, {{d, a}, {d, c}, {c, b}, {c, f}, {c, e}}).

5
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x

8
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a

y

d

c

f
e

ba

Figure 1.1: Two examples of combinatorial structures.

The singleton {d} which appears as the first component of γ indicates the root of this rooted tree.
As for the oriented cycle, it can be put in the form s = (γ, U), where

U = {x, 4, y, a, 7, 8},
γ = {(4, y), (y, a), (a, x), (x, 7), (7, 8), (8, 4)}.

The abuse of notation s = γ, which consists of identifying a structure s = (γ, U) with the construc-
tion γ, will be used if it does not cause any ambiguity with regard to the nature of the underlying
set U . As an example which could give rise to such an ambiguity, consider the structure

s = (γ, U) with U = {c, x, g, h,m, p, q}, and γ = {x,m, p},

so that γ is a subset of U . Clearly the knowledge of γ by itself does not enable one to recover the
underlying overset U . A traditional approach to the concept of structure consists in generalizing
the preceding examples within axiomatic set theory. However, in the present work we adopt a
functorial approach which puts an emphasis on the transport of structures along bijections. Here
is an example which illustrates the concept of transport of structures.

Example 1.1. Consider the rooted tree s = (γ, U) of Figure 1.1 whose underlying set is U =
{a, b, c, d, e, f}. Replace each element of U by those of V = {x, 3, u, v, 5, 4} via the bijection σ :
U −→ V described by Figure 1.1. This figure clearly shows how the bijection σ allows the transport
of the rooted tree s onto a corresponding rooted tree t = (τ, V ) on the set V , simply by replacing
each vertex u ∈ U by the corresponding vertex σ(u) ∈ V . We say that the rooted tree t has been
obtained by transporting the rooted tree s along the bijection σ, and we write t = σ·s. From a
purely set theoretical point of view, this amounts to replacing simultaneously each element u of U
appearing in γ by the corresponding element σ(u) of V in the expression of γ. The rooted trees s
and t are said to be isomorphic, and σ is said to be an isomorphism between s and t.

Intuitively two isomorphic structures can be considered as identical if the nature of the elements
of their underlying sets is ignored. This “general form” that isomorphic structures have in common
is their isomorphism type. It often can be represented by a diagram (see, for example, Figure 1.3))
in which the elements of the underlying set become “indistinguishable” points. The structure is
then said to be unlabeled. Figure 1.4 illustrates a rooted tree automorphism. In this case, the sets
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4
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U = {a, b, c, d, e, f}

V = {x, 3, u, v, 5, 4}

Figure 1.2: Transport as a relabeling of vertices.

a
b

d

c

f

e

Figure 1.3: Labelled and unlabeled structures.

U and V coincide, the bijection σ : U −→ U is a permutation of U , and the transported rooted
tree σ·s is identical to the tree s, that is to say, s = σ·s. The preceding examples show that the
concept of transport of structures is of prime importance since it enables one to define the notions
of isomorphism, isomorphism type and automorphism. In fact, the transport of structures is at the
very base of the general concept of species of structures.

a

b

c

d

e

f

a

f

c

d

b

e

A = {a, b, c, d, e, f}

A = {a, b, c, d, e, f}

Figure 1.4: A non trivial tree automorphism.

Example 1.2. As an introduction to the formal definition of species of structures, here is a detailed
description of the species G of all simple graphs (i.e., undirected graphs without loops or multiple
edges). For each finite set U , we denote by G[U ] the set of all structures of simple graph on U .
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Thus

G[U ] = {g | g = (γ, U), γ ⊆ ℘[2][U ]},

where ℘[2][U ] stands for the collection of (unordered) pairs of elements of U . In the simple graph
g = (γ, U), the elements of U are the vertices of the graph g, and γ is the set of its edges. Clearly
G[U ] is a finite set. The following three expressions are considered to be equivalent:

– g is a simple graph on U ;

– g ∈ G[U ];

– g is a G-structure on U .

Moreover, each bijection σ : U −→ V induces, by transport of structure (see Figure 1.5), a function

G[σ] : G[U ] −→ G[V ], g 7→ σ·g,

describing the transport of graphs along σ. Formally, if g = (γ, U) ∈ G[U ], then G[σ](g) = σ·g =
(σ·γ, V ), where σ·γ is the set of pairs {σ(x), σ(y)} of elements of V obtained from pairs {x, y} ∈ γ.
Thus each edge {x, y} of g finds itself relabeled {σ(x), σ(y)} in σ·g. Since this transport of graphs
along σ is only a relabeling of the vertices and edges by σ, it is clear that for bijections σ : U −→ V
and τ : V −→W , one has

G[τ ◦ σ] = G[τ ] ◦ G[σ], (1.1)

and that, for the identity map IdU : U −→ U , one has

G[IdU ] = IdG[U ]. (1.2)

These two equalities express the functoriality of the transports of structures G[σ]. It is this property
which is abstracted in the definition of species of structures.

σ

a

x

t

u

z

v

m
s

q

p

U = {a, x, u, t, z}

V = {m, p, v, q, s}

Figure 1.5: Relabeling of vertices.
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1.1.1 General definition of species of structures

Definition 1.3. A species of structures is a rule F which produces

i) for each finite set U , a finite set F [U ],

ii) for each bijection σ : U −→ V , a function F [σ] : F [U ] −→ F [V ].

The functions F [σ] should further satisfy the following functorial properties:

a) for all bijections σ : U −→ V and τ : V −→W ,

F [τ ◦ σ] = F [τ ] ◦ F [σ], (1.3)

b) for the identity map IdU : U −→ U ,

F [IdU ] = IdF [U ]. (1.4)

An element s ∈ F [U ] is called an F -structure on U (or even a structure of species F on U).
The function F [σ] is called the transport of F -structures along σ. The advantage of this definition
of species is that the rule F , which produces the structures F [U ] and the transport functions F [σ],
can be described in any fashion provided that the functoriality conditions (1.3) and (1.4) hold. For
example, one can either use axiomatic systems, explicit constructions, algorithms, combinatorial
operations, functional equations or even simple geometric figures to specify a species. We will
illustrate below each of these approaches with some examples. It immediately follows from its
functorial properties that each transport function F [σ] is necessarily a bijection (See Exercise 1.2).
We use the notation σ·s, or sometimes σ·F s to avoid ambiguity, to designate F [σ](s). The following
statements are to be considered equivalent:

– s is a structure of species F on U ;

– s ∈ F [U ];

– s is an F -structure on U .

In order to represent a generic F -structure, we often utilize drawings like those of Figures 1.6 The
black dots in these figures represent the (distinct) elements of the underlying set. The F -structure
itself is represented in Figure 1.6 a) by a circular arc labelled F , and in Figure 1.6 b) by the
superposition of the symbol F . Observe that the notions of isomorphism, isomorphism type and
automorphism of F -structures are implicitly contained in the definition of the species F .

Definition 1.4. Consider two F -structures s1 ∈ F [U ] and s2 ∈ F [V ]. A bijection σ : U −→ V is
called an isomorphism of s1 to s2 if s2 = σ·s1 = F [σ](s1). One says that these structures have the
same isomorphism type. Moreover, an isomorphism from s to s is said to be an automorphism
of s.
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F

F

a) b)

Figure 1.6: Possible representations of typical F -structures.

1.1.2 Species described through set theoretic axioms

A species F can be defined by means of a system A of well-chosen axioms by requiring

s = (γ, U) ∈ F [U ] if and only if s = (γ, U) is a model of A.

The transport F [σ] is carried out in the natural fashion illustrated earlier. Clearly one can introduce
in this manner a multitude of species, including the following (see Exercise 1.4):

– the species A, of rooted trees;

– the species G, of simple graphs;

– the species Gc, of connected simple graphs;

– the species a, of trees (connected simple graphs without cycles);

– the species D, of directed graphs;

– the species Par, of set partitions;

– the species ℘, of subsets, i.e., ℘[U ] = {S | S ⊆ U};
– the species End, of endofunctions, i.e., End[U ] = {ψ | ψ : U −→ U};
– the species Inv, of involutions, i.e., those endofunctions ψ such that ψ ◦ ψ = Id;

– the species S, of permutations (i.e., bijective endofunctions);

– the species C, of cyclic permutations (or oriented cycles);

– the species L, of linear (or total orders).

For example, we can describe the set of endofunctions on U by the set theoretic characterization:
(ψ,U) ∈ End[U ] if and only if

ψ ⊆ U × U and (∀x)[(x ∈ U) =⇒ (∃!y)[(y ∈ U) and ((x, y) ∈ ψ)]]. (1.5)

Directed graphs ψ satisfying (1.5) are called functional digraphs. We also say that ψ is thesagittal
graph of the endofunction. Note that the transport End[σ] : End[U ] −→ End[V ] along the bijection
σ : U −→ V is given by the formula End[σ](ψ) = σ ◦ ψ ◦ σ−1, for each ψ ∈ End[U ]. Indeed, upon
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setting θ = End[σ](ψ) ∈ End[V ], the pairs (u, ψ(u)) run over the functional digraphs determined
by ψ if and only if the pairs (σ(u), σ(ψ(u)) run over the sagittal graphs determined by θ. Moreover,
the relation v = σ(u) is equivalent to the relation u = σ−1(v). We then deduce that the functional
digraph of θ is given by pairs of the form (v, σ ◦ ψ ◦ σ−1(v)) with v ∈ V .

1.1.3 Explicit constructions of species

When the structures of a species F are particularly simple or not numerous, it can be advantageous
to define the species by an explicit description of the sets F [U ] and transport functions F [σ]. The
following species fall under this category. In each case the transport of structures F [σ] is obvious.

– The species E, of sets, is simply defined as E[U ] := {U}. Thus, for each finite set U , there
is a unique E-structure, namely the set U itself.

– The species ε, of elements, is defined as ε[U ] := U . Hence the associated structures on U
are simply the elements of U .

– The species X, characteristic of singletons, is defined by setting

X[U ] :=

{
{U}, if #U = 1,

∅, otherwise.

In other words there are no X-structure on sets having cardinality other then 1.

– The species 1, characteristic of the empty set, defined by

1[U ] :=

{
{U}, if U = ∅,
∅, otherwise.

– The emptyspecies!empty species, denoted by 0, simply defined as 0[U ] := ∅ for all U .

– The species E2, characteristic of sets of cardinality 2, defined by

E2[U ] :=

{
{U}, if #U = 2,

∅, otherwise.

1.1.4 Algorithmic descriptions

One can specify structures in an algorithmic fashion. For instance, an algorithm can be given which
generates all the binary rooted trees on a given set of vertices. If we designate this algorithm by
B, then for an input set U , the output B[U ] is the set of B-structures, namely all possible binary
graphs on U . For each bijection σ : U −→ V , algorithm B should also produce an explicit and
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effective translation of each element of B[U ] into an element of B[V ]. For example, one of the
structures produced by algorithm B on the set U = {a, b, c, d, e, f} would be

((∅, b, (∅, d, ∅)), c, (∅, a, ((∅, f, ∅), e, ∅))).

(see Figure 1.7 for a representation of this binary rooted tree). The transport of this structure
along the bijection σ : {a, b, c, d, e, f} −→ {A,B,C,D,E, F}, simply replaces each letter by its
corresponding capital letter:

B[σ]((∅, b, (∅, d, ∅)), c, (∅, a, ((∅, f, ∅), e, ∅))) = ((∅, B, (∅, D, ∅)), C, (∅, A, ((∅, F, ∅), E, ∅))).

In general, species of structures satisfying a “functional equation” can readily be defined in an

c

a

e

f

d
b

Figure 1.7: A binary rooted tree.

algorithmic or recursive manner.

1.1.5 Using combinatorial operations on species

Another way of producing species of structures is by applying operations to known species. These
operations (addition, multiplication, substitution, differentiation, etc.) will be described in detail
in Sections 2.1, 2.2, 2.3, and 2.4. Here are some examples:

– the species E3, of tricolorations, E3 = E · E · E,

– the species E+, of non-empty sets, 1 + E+ = E,

– the species H, of hedges (or lists of rooted trees), H = L(A),

– the species Der, of derangements, E ·Der = S,

– the species Bal, of ballots (or ordered partitions).

1.1.6 Functional equation solutions

It also frequently happens that species of structures are described or characterized recursively by
functional equations. Here are some examples:
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– the species A, of rooted trees, A = X · E(A),

– the species L, oflinear orders, L = 1 +X · L,

– the species AL, of ordered rooted trees, AL = X · L(AL),

– the species B, of binary rooted trees, B = 1 +X · B2,

– the species P, of commutative parenthesizations, P = X + E2(P).

The description of species of structures with the help of functional equations plays a central role in
the theory of species.

1.1.7 Geometric descriptions

One can sometimes gain in simplicity or clarity by describing a species F with the help of one
(or several) figure(s) which schematically represents a typical F -structure. Figure 1.8 represents
a typical structure belonging to the species P of polygons (i.e., non-oriented cycles) on a set of
cardinality 5. By definition, P [U ] is the set of polygons on U .

Figure 1.8: A polygon.

Remark 1.5. The reader who is familiar with category theory will have observed that a species is
simply a functor F : B −→ E from the category B of finite sets and bijections to the category E of
finite sets and functions. Although the knowledge of category theory is not necessary in order to
read this book, the interested reader is encouraged to consult a basic text on category theory, such
as Maclane [229].

1.2 Associated Series

We will now associate to each species of structures F three important formal power series related
to the enumeration of F -structures. An F -structure s ∈ F [U ] on a set U is often referred to as a
labelled structure, whereas an unlabeled structure is an isomorphism class of F -structures. The
three series are

– the (exponential) generating series of F , denoted F (x), for labelled enumeration,
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– the type generating series of F , denoted F̃ (x), for unlabeled enumeration,

– the cycle index series of F , denoted ZF (x1, x2, x3, . . .), as a general enumeration tool.

These series serve to “encode” all the information concerning the enumeration of labelled or un-
labeled F -structures (i.e., up to isomorphism). Note that for all finite sets U , the number of
F -structures on U only depends upon the number of elements of U (and not on the elements of
U). In other words,

the cardinality of F [U ] only depends upon that of U .

This property immediately follows from the earlier observation (See Exercise 1.12) that transport
functions F [σ] are always bijections. Hence, the cardinalities |F [U ]| are completely characterized
by the sequence of values fn = |F [{1, 2, . . . , n}]|, n ≥ 0. For ease in notation, let us write [n] to
designate the set {1, 2, 3, . . . , n}, and F [n] to designate the set F [{1, 2, . . . , n}], rather than F [[n]].

1.2.1 Generating series of a species of structures

Definition 1.6. The generating series of a species of structures F is the formal power series

F (x) =
∞∑
n=0

fn
xn

n!
, (1.6)

where fn = |F [n]| = the number of F -structures on a set of n elements (labelled structures). Note
that this series is of exponential type in the indeterminate x in the sense that n! appears in the
denominator of the term of degree n. The series F (x) is also called the exponential generating
series of the species F . The following notation is used to designate the coefficients of formal power
series. For an ordinary formal power series

G(x) =
∑
n≥0

gn x
n,

we set

[xn]G(x) = gn. (1.7)

For a formal power series of exponential type, of the form (1.6), we then have

n! [xn]F (x) = fn. (1.8)

Taking the Taylor expansion (at the origin) of F (x) shows that

n! [xn]F (x) =
dnF (x)

dxn

∣∣∣
x=0

.
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More generally, for a formal power series in any number of variables expressed in the form

H(x1, x2, x3, . . .) =
∑

n1,n2,n3,...

hn1,n2,n3,...
xn1

1 xn2
2 xn3

3 . . .

cn1,n2,n3,...
,

where cn1,n2,n3,... is a given family of non-zero scalars, we have

cn1,n2,n3,... [xn1
1 xn2

2 xn3
3 . . .]H(x1, x2, x3, . . .) = hn1,n2,n3,.... (1.9)

Example 1.7. Referring to species described earlier, it is easy to verify by direct enumeration the
following identities:

a) L(x) =
1

1− x
, b) S(x) =

1

1− x
, c) C(x) = − log(1− x),

d) E(x) = ex, e) ε(x) = xex, f) ℘(x) = e2x,

g) X(x) = x, h) 1(x) = 1, i) 0(x) = 0,

j) G(x) =
∑
n≥0

2(n2)
xn

n!
, k) D(x) =

∑
n≥0

2n
2 xn

n!
, l) End(x) =

∑
n≥0

nn
xn

n!
.

(1.10)

The computation of the generating series for other species Gc, Par, Inv, A, etc. which have been
mentioned earlier is less direct. It will be done after the introduction of combinatorial operations
on species of structures.

1.2.2 Type generating series

Let us now consider the enumeration of isomorphism types of F -structures. We may restrict
ourselves to structures on sets of the form U = {1, 2, . . . , n} = [n]. One defines an equivalence
relation ∼ on the set F [n] by setting, for s, t ∈ F [n],

s ∼ t if and only if s and t have the same isomorphism type.

In other words (see Definition 1.4), s ∼ t if and only if there exists a permutation π : [n] −→ [n]
such that F [π](s) = t. By definition, an isomorphism type of F -structures of order n is an
equivalence class (modulo the relation ∼) of F -structures on [n]. Such an equivalence class is also
called an unlabeled F -structure of order n. Denote by T(Fn) the quotient set F [n]/ ∼, of types of
F -structures of order n and let

T(F ) =
∑
n≥0

T(Fn).

Definition 1.8. The (isomorphism) type generating series of a species of structures F is the
formal power series

F̃ (x) =
∑
n≥0

f̃nx
n,
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where f̃n = |T(Fn)| is the number unlabeled F -structures of order n. The notation F (̃x) will
sometimes be used for typographical reasons. Note that this is an ordinary formal power series
(i.e., without factorials in the denominators) in one indeterminate x, which acts as a point counter.

Example 1.9. Direct calculations yield the following type generating series (see Exercise 1.13):

a) L̃(x) =
1

1− x
, b) S̃(x) =

∞∏
k=1

1

1− xk
, c) C̃(x) =

x

1− x
,

d) Ẽ(x) =
1

1− x
, e) ∈̃(x) =

x

1− x
, f) ℘̃(x) =

1

(1− x)2
,

g) X̃(x) = x, h) 1̃(x) = 1, i) 0̃(x) = 0.

(1.11)

Despite the fact that the generating series of the species L and S coincide, L(x) = S(x) = 1/(1−x),
equality does not hold for the type generating series:

L̃(x) 6= S̃(x).

This provides evidence that the species L and S are not the same. Indeed, total orders and
permutations are not transported in the same manner along bijections. In particular, a total order
only admits a single automorphism, whereas in general a permutation admits many automorphisms.
Thus there is an essential difference between permutations π of a set U of cardinality n and lists
without repetition π1π2 . . . πn of the elements of U . Of course, if the set U happens to be given a
fixed order, one can establish a bijection (depending on this order) between permutations and lists
(see Example 1.18).

1.2.3 Cycle index series

In general, explicit or recursive calculation of type generating series is difficult. It requires the use
of combinatorial operations on species of structures and of a third kind of series associated with
each species F , the cycle index series of F , denoted by ZF . This is a formal power series in an
infinite number of variables x1, x2, x3, . . . . It contains more information than both series F (x) and
F̃ (x). We first define the cycle type of a permutation.

Definition 1.10. Let U be a finite set and σ, a permutation of U . The cycle type of the
permutation σ is the sequence (σ1, σ2, σ3, . . .), where for k ≥ 1, σk = is the number of cycles of
length k in the decomposition of σ into disjoint cycles. Observe that σ1 is the number of fixed
points of σ. Moreover, if |U | = n then σk = 0 if k ≥ n. The cycle type of σ can then be written in
the form of a vector with n components, (σ1, σ2, . . . , σn). We use the following notation:

Fix σ = {u ∈ U | σ(u) = u},
fix σ = |Fix σ|.

Fix σ denotes the set of fixed points of σ, whereas fix σ = σ1 denotes the number of fixed points
of σ. Figure 1.9 shows a permutation of type (3, 4, 0, 3, 2).
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Figure 1.9: A permutation of cycle type (3, 4, 0, 3, 2).

Now let F be any species. Each permutation σ of U induces, by transport of structures, a
permutation F [σ] of the set F [U ] of F -structures on U . Consider, for illustrative purposes, the
species Inv of involutions (i.e., the endofunctions ψ such that ψ ◦ ψ = Id) and the permutation σ
of the set U = {a, b, c, d, e} given by Figure 1.10. This permutation σ induces a permutation Inv[σ]

dc

e
a b

Figure 1.10: A permutation of the set {a, b, c, d, e}.

on Inv[U ] given by Figure 1.11 in which involutions are represented by simple graphs with each
vertex having degree ≤ 1. The permutation σ is of type (0, 1, 1) and permutes 5 points, while the
permutation Inv[σ] is of type (2, 0, 2, 0, 0, 3) permuting the 26 involutions of U . In particular, we
have fix Inv[σ] = 2.

Definition 1.11. The cycle index series of a species of structures F is the formal power series
(in an infinite number of variables x1, x2, x3, . . .)

ZF (x1, x2, x3, . . .) =
∑
n≥0

1

n!

(∑
σ∈Sn

fix F [σ]xσ11 xσ22 xσ33 . . .

)
, (1.12)

where Sn denotes the group of permutations of [n] (i.e., Sn = S[n]) and fixF [σ] = (F [σ])1 = is the
number of F -structures on [n] fixed by F [σ], i.e., the number of F -structures on [n] for which σ is
an automorphism.

Example 1.12. Without the help of various techniques developed in the following sections, direct
calculation of cycle index series can only be carried out in very simple cases. For instance, for the
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Figure 1.11: Action of Inv[σ] on Inv[U ].

species 0, 1, X, L, S, E, ∈, we have

a) Z0(x1, x2, x3, . . .) = 0,
b) Z1(x1, x2, x3, . . .) = 1,
c) ZX(x1, x2, x3, . . .) = x1,

d) ZL(x1, x2, x3, . . .) =
1

1− x1
,

e) ZS(x1, x2, x3, . . .) =
1

(1− x1)(1− x2)(1− x3) . . .
,

f) ZE(x1, x2, x3, . . .) = exp(x1 +
x2

2
+
x3

3
+ . . .),

g) Zε(x1, x2, x3, . . .) = x1 exp(x1 +
x2

2
+
x3

3
+ . . .).

(1.13)

The notion of cycle index series ZF gives a simultaneous generalization of both the series F (x)
and F̃ (x). In fact, we have the following fundamental theorem.

Theorem 1.13. For any species of structures F , we have

a) F (x) = ZF (x, 0, 0, . . .), b) F̃ (x) = ZF (x, x2, x3, . . .).

Proof. To establish a), proceed as follows. Substituting x1 = x and xi = 0, for all i ≥ 2, in equation
(1.12) gives

ZF (x, 0, 0, . . .) =
∑
n≥0

1

n!

(∑
σ∈Sn

fixF [σ]xσ10σ20σ3 . . .

)
.
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Now for each fixed value of n ≥ 0, xσ10σ20σ3 . . . = 0, except if σ1 = n and σi = 0 for i ≥ 2. In other
words, only the identity permutations σ = Idn contribute to the sum. Thus

ZF (x, 0, 0, . . .) =
∑
n≥0

1

n!
fixF [Idn]xn

=
∑
n≥0

1

n!
fnx

n

= F (x),

since all F -structures are fixed by transport along the identity. Equality b) is based upon a lemma
of Cauchy-Frobenius (alias Burnside). Indeed, we have

ZF (x, x2, x3, . . .) =
∑
n≥0

1

n!

∑
σ∈Sn

fix F [σ]xσ1x2σ2x3σ3 · · ·

=
∑
n≥0

1

n!

∑
σ∈Sn

fix F [σ]xn

=
∑
n≥0

|F [n]/∼ |xn

= F̃ (x).

Example 1.14. As an illustration of Theorem 1.13, consider the case of the species S of permu-
tations. It immediately follows from (1.13), e) that

ZS(x, 0, 0, . . .) =
1

1− x
= S(x),

ZS(x, x2, x3, . . .) =
1

(1− x)(1− x2)(1− x3) . . .

= S̃(x),

in agreement with the formulas given earlier for S(x) and S̃(x).

Remark 1.15. In examining Figures 1.10 and 1.11, one is easily convinced that the cycle type of
Inv[σ] is independent of the nature of the points of U and only depends on the type of σ. This
is a general phenomenon. Indeed, for all species F and all permutations σ of U , the cycle type
((F [σ])1, (F [σ])2, . . .) of F [σ] only depends on the cycle type (σ1, σ2, . . .) of σ (see Exercise 1.15).
In particular, the number of fixed points of the permutation F [σ], given by transport

fix F [σ] = |Fix F [σ]| = (F [σ])1,

only depends on the numbers σ1, σ2, . . . . Hence, in the definition of cycle index series (1.12), all
permutations σ having the same cycle type (σ1, σ2, σ3, . . .) contribute to the same monomial in the
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variables x1, x2, x3, . . . . In order to eliminate this redundancy, we regroup the monomials of the
index series which correspond to each of these types. Since the number of permutations σ of n
elements, of type (n1, n2, n3, . . .), is given by

n!

1n1n1!2n2n2!3n3n3! . . .
,

we obtain, after simplification of the n!, the following variant for the definition of the index series
of any species F :

ZF (x1, x2, x3, . . .) =
∑

n1+2n2+3n3+...<∞
fixF [n1, n2, n3, . . .]

xn1
1 xn2

2 xn3
3 . . .

1n1n1!2n2n2!3n3n3! . . .
.

Here fixF [n1, n2, n3, . . .] denotes the number of F -structures on a set of n =
∑

i≥1 ini elements
which are fixed under the action of any (given) permutation of type (n1, n2, n3, . . .). In other words,
introducing the compact notations n = (n1, n2, n3, . . .), and aut(n) = 1n1n1!2n2n2!3n3n3! . . ., we
have

fixF [n] = coeffnZF := aut(n) [xn1
1 xn2

2 xn3
3 . . .]ZF (x1, x2, x3, . . .).

1.2.4 Combinatorial equality

To conclude the present section, we discuss various concepts of equality which one encounters in
the theory of species of structures. Strictly speaking, two species F and G are equal or identical
if they have the same structures and the same transports: for all finite sets U , F [U ] = G[U ], and
for all bijections σ : U −→ V , F [σ] = G[σ]. However, this concept of identity is very restrictive. A
much weaker version of equality between species is that of equipotence. It is obtained by replacing
the set equalities F [U ] = G[U ] by bijections F [U ] −→ G[U ].

Definition 1.16. Let F and G be two species of structures. An equipotence α of F to G is a
family of bijections αU , where for each finite set U ,

αU : F [U ]
∼−→G[U ].

The two species F and G are then called equipotent, and one writes F ≡ G. In other words, F ≡ G
if and only if there is the same number of F -structures as G-structures on all finite sets U .

For example, the species S of permutations is equipotent to the species L of linear orders since
one has |S[U ]| = |U |! = |L[U ]| for all finite sets U . Clearly,

F ≡ G ⇔ F (x) = G(x).

The concept of equipotence is useful when one is only interested in the enumeration of labelled
structures. However, it turns out to be inadequate when one wants to enumerate the isomorphism
types of structures. Indeed,

F ≡ G 6⇒ F̃ (x) = G̃(x),

F ≡ G 6⇒ ZF = ZG,
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as has been already observed for the species S and L. The “good” notion of equality between species
of structures lies half-way between identity and equipotence. It is the concept of isomorphism of
species. It requires that the family of bijections αU : F [U ] −→ G[U ] satisfy an additional condition
relative to the transport of structures, called the naturality condition.

Definition 1.17. Let F and G be two species of structures. An isomorphism of F to G is a
family of bijections αU : F [U ] −→ G[U ] which satisfies the following naturality condition: for any
bijection σ : U −→ V between two finite sets, the following diagram commutes:

F [U ]
αU−−−−−−−→G[U ]

F [σ]

y
yG[σ]

F [V ]
αV−−−−−−−→G[V ]

In other words, for any F -structure s ∈ F [U ], one must have σ·αU (s) = αV (σ·s). The two species
F and G are then said to be isomorphic, and one writes F ' G.

Informally, the naturality condition means that, for any F -structure s on U , the corresponding
G-structure αU (s) on U can be described without appealing to the nature of the elements of U .
Although much weaker than the concept of identity, the concept of isomorphism is nevertheless
compatible with the transition to series (see Exercise 1.19) in the sense that

F ' G ⇒


F (x) = G(x),

F̃ (x) = G̃(x),

ZF (x1, x2, x3, . . .) = ZG(x1, x2, x3, . . .).

We will have many occasions to verify that two isomorphic species essentially possess the “same”
combinatorial properties. Henceforth they will be considered as equal in the combinatorial algebra
developed in the next sections. Thus we write F = G in place of F ' G, and say that there is a
combinatorial equality between the species F and G.

Example 1.18. There exist many classic bijections showing that the species L and S are equipo-
tent. These bijections ϕU : L[U ] → S[U ] are all based on a linear order ≤U given a priori
on the underlying set U . The most common, when U = [n], consists of identifying the list
(σ(1), σ(2), . . . , σ(n)) with the bijection i 7→ σ(i).

Example 1.19. Another classical bijection, called the fundamental transformation (see Foata
[45] or Knuth [172]), is particularly elegant. Here is the description. Given a list

λ = (u1, u2, . . . , ui, . . . , un),

in L[U ], let i1, i2, . . . , ik be the increasing sequence of indices for which the uij are the minimum
from left to right (records) according to the order ≤U . That is to say uij = min{ui|i ≤ ij}, with j
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running from 1 to k. In particular, i1 = 1. One then defines τ = ϕU (λ) ∈ S[U ] as being the per-
mutation whose disjoint cycle decomposition is τ = (u1, . . . , ui2−1)(ui2 , . . . , ui3−1) . . . (uik , . . . , un).
For example, for λ = (5, 9, 7, 3, 8, 1, 4, 6, 2) ∈ L[9], the minima from left to right are 5, 3, 1 and
i1 = 1, i2 = 4, i3 = 6, so that τ = ϕ[9](λ) = (5, 9, 7)(3, 8)(1, 4, 6, 2). Rewriting the cycles according
to increasing order of their minimum elements, we get τ = (1, 4, 6, 2) (3, 8) (5, 9, 7). This is the so-
called standard form for τ . Conversely, to recover λ from τ written in standard form, it suffices to
write the cycles of τ in decreasing order of their minimum elements, then removing the parentheses.
The fundamental transformation λ → τ = ϕU (λ) has the advantage of preserving a large part of
the functional digraph of these structures. It is compatible with the transport of structures along
increasing bijections σ : (U,≤U ) −→ (V,≤V ), in the sense that σ·ϕU (λ) = ϕV (σ·λ). However, this
is not the case for an arbitrary bijection σ : U −→ V since the species L and S are not isomorphic
(see Exercise 1.19, d)).

1.2.5 Contact of order n

Here is a last notion of equality, more topological but extremely useful when constructing species of
structures by successive approximations. It is the concept of contact of order n between species
of structures, for an integer n ≥ 0. Recall that given two formal power series a(x) =

∑
n≥0 anx

n

and b(x) =
∑

n≥0 bnx
n, one says that a(x) and b(x) have contact of order n, and one writes

a(x) =n b(x), if for all k ≤ n,
[
xk
]
a(x) =

[
xk
]
b(x). In other words, letting a≤n(x) =

∑
0≤k≤n akx

k,
one has a(x) =n b(x) if and only if a≤n(x) = b≤n(x). Contact of order n for index series is defined
in a similar fashion by setting

h≤n(x1, x2, x3, . . .) =
∑

n1+2n2+3n3+...≤n
hn1n2n3...x

n1
1 xn2

2 xn3
3 · · · . (1.14)

By analogy, one has the following definition for species of structures.

Definition 1.20. Let F and G be two species of structures and n, an integer ≥ 0. One says that F
and G have contact of order n, and one writes F =nG, if the combinatorial equality F≤n = G≤n
is valid, where F≤n denotes the species obtained by restriction of F to sets of cardinality ≤ n. More
precisely, for finite sets U and V , and a bijection σ : U −→ V , set

F≤n[U ] =

{
F [U ], if, |U | ≤ n,
∅, otherwise.

Transport of structures for F≤n being defined in a straightforward manner. It is clear that when
species F and G have contact of order n, their associated series also have contact of order n:

F =nG =⇒


F (x) =nG(x),

F̃ (x) =n G̃(x),

ZF (x1, x2, x3, . . .) =n ZG(x1, x2, x3, . . .).
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Definition 1.21. Limit of a sequence of species of structures. A sequence (Fn)n≥0 of
species of structures is said to converge to a species F , written as limn→∞ Fn = F , if for any
integer N ≥ 0, there exists K ≥ 0 such that for all n ≥ K, Fn =N F . For any species F , it is clear
that

lim
n→∞

F≤n = F.

This concept of limit is compatible with passage to the associated series (see Exercise 1.22).

1.3 Exercises

Exercises for Section 1.1

Exercise 1.1. Verify the functoriality of the transport of graphs along bijections, i.e., show that
the transport functions G[σ] satisfy Equations (1.1) and (1.2).

Exercise 1.2. Let F be a species of structures and let σ : U −→ V be any bijection between finite
sets. Use functoriality to show that the transport function F [σ] : F [U ] −→ F [V ] is necessarily a
bijection.

Hint: Show that F [σ]−1 = F [σ−1].

Exercise 1.3. Describe the transport functions for the following species: E, ε , X, 1, and 0.

Exercise 1.4. Show how to define, with the help of axioms, the following species: Gc, D, a, ℘,
Par, Inv, S, C, L. In each case describe the transport of structures.

Exercise 1.5. Figure 1.12 describes a structure belonging to the species Cha of chains (non-
oriented). Describe rigorously this species.

Figure 1.12: A chain.

Exercise 1.6. For all integers n ≥ 0, designate by Sn the symmetric group formed of permutations
(bijections) of [n] = {1, 2, . . . , n}, under the operation of composition.

a) Show that every species of structures F induces, for each n ≥ 0, an action Sn×F [n] −→ F [n],
of the group Sn on the set F [n] of F -structures on [n], by setting σ·s = F [σ](s) for σ ∈ Sn
and s ∈ F [n].

b) Conversely, show that any family of set actions (Sn × Fn −→ Fn)n≥0, allows the definition
of a species of structures F for which the families of actions above are isomorphic.
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Exercise 1.7. The geometric figure 1.13 describes a structure belonging to the species Oct of
octopuses (see [20]). Describe rigorously this species.

Figure 1.13: An octopus.

Exercise 1.8. Let F be a species of structures. Prove that the relation “is isomorphic to” is an
equivalence relation on the totality of F -structures. More precisely, prove that for all F -structures
s, t, and r, one has

a) s ∼ s
b) s ∼ t =⇒ t ∼ s
c) s ∼ t and t ∼ r implies that s ∼ r, where s ∼ t signifies that there exists an isomorphism

from s to t.

Exercise 1.9. a) List all trees on each of the sets: ∅, {1}, {1, 2}, {1, 2, 3}, and {1, 2, 3, 4}.
b) List all isomorphism types of trees (i.e.: unlabeled trees) having at most 7 vertices.

Exercise 1.10. Let L be the species of linear orders and S be that of permutations.

a) Show that for all n ≥ 0 the number of L-structures on a set of cardinality n and the number
of S-structures on a set of cardinality n are both equal to n!.

a) Show that for all n ≥ 2 the number of isomorphism types of L-structures on a set of cardinality
n is strictly less than the number of types of S-structures on a set of cardinality n.

Exercises for Section 1.2

Exercise 1.11. Verify, by direct enumeration, formulas (1.10) for the generating series of the
species L, S, C, E, ∈, ℘, X, 1, 0, G, D, and End.

Exercise 1.12. Verify that the type generating series of the species Par and S coincide.

Exercise 1.13. Verify, by direct enumeration, formulas (1.11) for the type generating series for
the species L, S, C, E, ∈, ℘, X, 1, and 0.



1.3. EXERCISES 25

Exercise 1.14. Consider two finite sets U and V such that |U | = |V |.

a) Show that for all linear orders s ∈ L[U ] and t ∈ L[V ] there exists a unique bijection σ : U −→
V such that L[σ](s) = t.

b) Show that two permutations α ∈ S[U ] and β ∈ S[V ] are isomorphic if and only if they have
the same cycle type.

Exercise 1.15. Prove that for any species F and any permutation σ of U , the cycle type

((F [σ])1, (F [σ])2, (F [σ])3, . . .)

of F [σ] only depends on the type (σ1, σ2, σ3, . . .) of σ (and does not depend on the nature of the
elements of U).

Hint: Use the functoriality of F .

Exercise 1.16. Let (n1, n2, n3, . . .) be a sequence of integers satisfying the condition
∑

i≥1 i ni = n.
Prove that the number of permutations σ of type (n1, n2, n3, . . .) of a set with n elements is given
by the expression

n!

1n1n1!2n2n2!3n3n3! . . .
.

Hint: Show that the number of automorphisms (i.e., permutations τ such that σ = τ−1στ) of
a permutation σ of cycle type n = (n1, n2, n3, . . .) is aut(n).

Exercise 1.17. Starting from the definition of cycle index series of a species, verify the formulas
(1.13) for the index series of the species 0, 1, X, L, S, E, and ∈.

Exercise 1.18. Verify the formulas F (x) = ZF (x, 0, 0, . . .) and F̃ (x) = ZF (x, x2, x3, . . .) for the
case of the following species: 0, 1, X, L, S, E, and ∈.

Exercise 1.19. a) Verify that F ≡ G if and only if F (x) = G(x).

b) Describe two distinct but isomorphic species.

c) Show that F ' G implies F (x) = G(x), F̃ (x) = G̃(x), and ZF = ZG.

d) Conclude from this that the species L and S are not isomorphic.

Exercise 1.20. a) Show that the extraction of the coefficients in equations (1.7), (1.8), and
(1.9) define linear transformations.

b) Express the linear transformation defined by equation (1.9) in terms of products of differential
operators.

Exercise 1.21. a) Let n ≥ 0 and u(t) ∈ K[[t]], the ring of formal power series in t with coeffi-
cients in K. Show that [tn]u(t) = 0 if and only if there exists w(t) ∈ K[[t]] such that

u(t) = t w′(t)− nw(t).
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b) Let n ≥ k ≥ 0. Also, let u(t) and v(t) be in K[[t]]. Show that n! [tn]u(t) = k!
[
tk
]
v(t) if and

only if there exists a w(t) ∈ K[[t]] such that

n<n−k> u(t)− tn−k v(t) = t w′(t)− nw(t),

where λ<m> := λ (λ− 1) · · · (λ−m+ 1), if m > 0, and λ<0> = 1.

c) Let n1, n2, . . . , nk be integers ≥ 0, and h(x1, x2 . . . , xk) ∈ K[[x1, x2 . . . , xk]]. Show that[
xn1

1 xn2
2 · · ·x

nk
k

]
h(x1, x2, . . . , xk) = 0

if and only if there exists w(x1, . . . , xk) ∈ K[[x1, . . . , xk]] such that

h(x1, . . . , xk) =

{(
x1

∂

∂x1
− n1

)2

+ . . . +

(
xk

∂

∂xk
− nk

)2
}
w(x1, . . . , xk).

d) State and prove a necessary and sufficient condition analogous to b) for the equality

cn1,...,nk

[
xn1

1 xn2
2 · · ·x

nk
k

]
u(x1, x2, . . . , xk) = cm1,...,mk

[
xm1

1 xm2
2 · · ·x

mk
k

]
v(x1, x2, . . . , xk).

Exercise 1.22. We say that a sequence of formal power series an(x) converges to a power series
a(x), and we write limn→∞ an(x) = a(x) if for any integer N > 0, there exists K > 0 such that
n ≥ K implies an(x) =N a(x).

a) Using the concept of contact of order n for the index series established in (1.14, define the
notion of limit of a sequence of index series.

b) Show that for two species of structures (Fn)n≥0 and F ,

lim
n→∞

Fn = F =⇒


lim
n→∞

Fn(x) = F (x),

lim
n→∞

F̃n(x) = F̃ (x),

lim
n→∞

ZFn(x1, x2, x3, . . .) = ZF (x1, x2, x3, . . .).



Chapter 2

Operations on Species

In this chapter we describe the basic operations on species of structures. Various combinatorial
operations on species of structures are used to produce new ones, in general more complex. The
operations introduced here are addition, multiplication, substitution and differentiation of species of
structures. They constitute a combinatorial lifting of the corresponding operations on formal power
series. The problems of specification, classification and enumeration of structures are then greatly
simplified, using this algebra of species. Also, this approach reveals a remarkable link between the
composition of functions and the plethystic substitution of symmetric functions, in the context of
Pólya theory.

Three other combinatorial operations are introduced in Sections 2.3 and 2.4, namely point-
ing (

•
), cartesian product (×) and functorial composition ( � ). The pointing operation interprets

combinatorially the operator x d
dx . The cartesian product, F ×G, which consists of superimposing

structures of species F and G, corresponds to coefficient-wise product of exponential generating
series, known as “Hadamard product”. The functorial composition, not to be confused with sub-
stitution, is a very natural operation if one recalls that a species of structures can be considered as
a functor. Many varieties of graphs and multigraphs can be simply expressed with the help of this
operation.

2.1 Addition and multiplication

We now introduce several operations on species of structures. There results a combinatorial al-
gebra, allowing the construction and analysis of a multitude of species, as well as the calculation
of associated series (generating series and cycle index series). These operations between species
often constitute combinatorial analogs of the usual operations, addition (+), multiplication ( · ),
substitution (◦) and differentiation (′) on their exponential generating functions.

In the algebraic context of formal power series in one variable x, given two series of exponential

27
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Operation Coefficient hn

h = f + g hn = fn + gn

h = f ·g hn =
∑
i+j=n

n!

i! j!
figj

h = f ◦g hn =
∑

0≤k≤n
n1+...+nk=n

n!

k!n1! . . . nk!
fk gn1 . . . gnk

(g(0)=0)

h = f ′ hn = fn+1

Table 2.1: Coefficients for some operation on series.

type

f = f(x) =
∞∑
n=0

fn
xn

n!
and g = g(x) =

∞∑
n=0

gn
xn

n!
,

Table 2.1 recalls the general coefficient hn of the series

h = h(x) =

∞∑
n=0

hn
xn

n!

constructed from f and g in the following cases: h = f + g, h = f ·g, h = f ◦g = f(g), and
h = d

dxf = f ′. By analogy, let us now consider two species of structures F and G and consider
the problem of constructing some other species, denoted by F +G, F ·G, F ◦G, and F ′, in order to
have, for the corresponding generating series, (F + G)(x) = F (x) + G(x), (F ·G)(x) = F (x)G(x),
(F ◦G)(x) = F (G(x)), and F ′(x) = d

dxF (x). These equalities between generating series signify
that the new species F + G, F ·G, F ◦G and F ′ should be defined so that the enumeration of
their structures depends “solely” on the enumeration of the F and G-structures, via the following
formulas:

1. the number of (F +G)-structures on n elements is |(F +G)[n]| = |F [n]|+ |G[n]|;
2. the number of (F ·G)-structures on n elements is

|(F ·G)[n]| =
∑
i+j=n

n!

i!j!
|F [i]| |G[j]|;

3. the number of (F ◦G)-structures on n elements is

|(F ◦G)[n]| =
n∑
j=0

∑
n1+n2+...+nj=n

ni>0

1

j!

(
n

n1 n2 . . . nj

)
|F [j]|

j∏
i=1

|G[ni]|;
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4. the number of F ′-structures on n elements is |F ′[n]| = |F [n+ 1]|.

There could exist, a priori, many candidates for these definitions. However, there are very natural
solutions which are, moreover, compatible with transport of structures. As we will see, this proves
to be fundamental, in particular for the calculation of index series. We only consider, in the present
section, the operations of addition and multiplication. Substitution and derivation will be treated
in Section 2.2.

2.1.1 Sum of species of structures

As a motivating example, let us consider the species Gc of connected simple graphs and the species
Gd of disconnected (i.e., empty or having at least two connected components) simple graphs. The
evident fact that every graph is either connected or disconnected gives rise to the equality G[U ] =
Gc[U ] +Gd[U ], with “+” standing for set theoretical disjoint union. We then say that the species G
is the sum of the species Gc and Gd, and we write G = Gc + Gd. This example serves as prototype
for the general definition of addition of species:

Definition 2.1. Let F and G be two species of structures. The species F +G, called the sum of
F and G, is defined as follows: an (F +G)-structure on U is an F -structure on U or (exclusive) a
G-structure on U . In other words, for any finite set U , one has

(F +G)[U ] = F [U ] +G[U ] (“+” standing for disjoint union).

The transport along a bijection σ : U −→ V is carried out by setting, for any (F +G)-structure s
on U ,

(F +G)[σ](s) =

{
F [σ](s), if s ∈ F [U ],

G[σ](s), if s ∈ G[U ].

In a pictorial fashion, any (F +G)-structure can be represented by Figure 2.1.

G

=

FF+G

or

Figure 2.1: A typical structure of species F +G.

Remark 2.2. In the case where certain F -structures are also G-structures (i.e., F [U ]∩G[U ] 6= ∅),
one must at first form distinct copies of the sets F [U ] and G[U ]. A standard way of distinguishing
the F -structures from the G-structures is to replace the set F [U ] by the isomorphic set F [U ]×{1}
and G[U ] by G[U ]× {2}, and to set (F +G)[U ] := (F [U ]× {1}) ∪ (G[U ]× {2}).
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The operation of addition is associative and commutative, up to isomorphism. Moreover,
the empty species 0 (not having any structure: 0[U ] = ∅) is a neutral element for addition, i.e.:
F + 0 = 0 + F = F , for all species F . We leave it to the reader to verify these properties as well
as the following proposition.

Proposition 2.3. Given two species of structures F and G, the associated series of the species
F +G satisfy the equalities

a) (F +G)(x) = F (x) +G(x),

b) ˜(F +G)(x) = F̃ (x) + G̃(x),
c) ZF+G = ZF + ZG.

(2.1)

Example 2.4. Let Eeven (respectively Eodd), be the species of sets containing an even number
(respectively odd number) of elements. Then E = Eeven +Eodd and Proposition 2.3 takes the form
of the equalities (see Exercise 2.3)

a) ex = cosh(x) + sinh(x),

b)
1

(1− x)
=

1

(1− x2)
+

x

(1− x2)
,

c) exp
(
x1 + x2

2 + x3
3 + . . .

)
= e(

x2
2

+
x4
4

+...) (cosh(x1 + x3
3 + . . .) + sinh(x1 + x3

3 + . . .)
)
.

(2.2)

The operation of addition can be extended to summable families of species in the following
sense.

Definition 2.5. A family (Fi)i∈I of species of structures is said to be summable if for any finite
set U , Fi[U ] = ∅, except for a finite number of indices i ∈ I. The sum of a summable family (Fi)i∈I
is the species

∑
i∈I Fi defined by the equalities

a)

(∑
i∈I

Fi

)
[U ] =

∑
i∈I

Fi[U ] =
⋃
i∈I

Fi[U ]× {i}, (2.3)

b)

(∑
i∈I

Fi

)
[σ](s, i) = (Fi[σ](s), i) , (2.4)

where σ : U −→ V is a bijection and (s, i) ∈ (
∑

i∈I Fi)[U ]. We leave to the reader the task of
verifying that

∑
i∈I Fi, defined in this way, is indeed a species of structures, that the families of

associated series are summable (see Exercise 2), and that one has

a)

(∑
i∈I

Fi

)
(x) =

∑
i∈I

Fi(x),

b)

(∑̃
i∈I

Fi

)
(x) =

∑
i∈I

F̃i(x),

c) Z(
∑
i∈I Fi)

=
∑
i∈I

ZFi .

(2.5)
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Definition 2.6. Canonical decomposition. Each species F gives rise canonically to an enu-
merable family (Fn)n≥0 of species defined by setting, for each n ∈ N

Fn[U ] =

{
F [U ], if |U | = n,

∅, otherwise.

with the obvious induced transports. We say that Fn is the species F restricted to cardinality n.
The family (Fn)n≥0 is clearly summable and we obtain the following canonical decomposition:

F = F0 + F1 + F2 + . . .+ Fn + . . . .

In the case where F = Fk (i.e., Fn = 0 for n 6= k), we say that F is concentrated on the
cardinality k.

Example 2.7. Taking, for example, the species P of polygons (introduced in Section 1.1), we
obtain P = P0 + P1 + P2 + . . . + Pn + . . . , where Pn designates the species of all n-gons. In an
analogous fashion, En is the species of sets of cardinality n (in particular E0 = 1 and E1 = X).
One has the combinatorial equality

E = E0 + E1 + E2 + . . .+ En + . . . ,

which is reflected, in terms of the associated series, by the identities

a) ex = 1 +
x

1!
+
x2

2!
+ . . .+

xn

n!
+ . . .,

b)
1

(1− x)
= 1 + x+ x2 + . . .+ xn + . . .,

c) exp
(
x1 +

x2

2
+
x3

3
+ . . .

)
=
∑
n≥0

∑
k1+2k2+3k3+...=n

xk11 xk22 xk33 . . .

1k1k1!2k2k2!3k3k3! . . .
.

Example 2.8. Other examples of infinite sums of species are given by the formulas

S =
∑
k≥0

S [k] and Par =
∑
k≥0

Par[k],

where S [k] denotes the species of permutations having exactly k cycles and Par[k], the species of
partitions having exactly k blocks (or classes).

The finite sum F +F + . . .+F of n copies of the same F is often denoted by nF . Clearly one

has (nF )(x) = nF (x), (̃nF )(x) = nF̃ (x), and ZnF = nZF . The particular case where F = 1 (the
empty set species) gives rise to the species

n = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n

= n · 1

which possesses exactly n structures on the empty set and no structure on any set U 6= ∅. Conse-
quently the natural numbers themselves are embedded in the combinatorial algebra of species of
structures.
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2.1.2 Product of species of structures

Let us examine the permutation described by Figure 2.2. We can divide this structure in two
disjoint structures:

i) a set of fixed points (those having a loop);

ii) a derangement of the remaining elements (i.e., the permutation without fixed points formed
by the non-trivial cycles).

=

Figure 2.2: A permutation as a set of fixed points together with a derangement.

Figure 2.2 illustrates this dichotomy. An analogous decomposition clearly exists for any permuta-
tion. We say that the species S of permutations is the product of the species E of sets with the
species Der of derangements and we write

S = E·Der. (2.6)

This is a typical example of the product of species of structures defined as follows.

Definition 2.9. Let F and G be two species of structures. The species F ·G (also denoted FG),
called the product of F and G, is defined as follows: an (F ·G)-structure on U is an ordered pair
s = (f, g) where

a) f is an F -structure on a subset U1 ⊆ U ;

b) g is a G-structure on a subset U2 ⊆ U ;

c) (U1, U2) is a decomposition of U , i.e., U1 ∪ U2 = U and U1 ∩ U2 = ∅.

In other words, for any finite set U , we have

(F ·G)[U ] :=
∑

(U1,U2)

F [U1]×G[U2],

with the disjoint sum being taken over all pairs (U1, U2) forming a decomposition of U . The
transport along a bijection σ : U −→ V is carried out by setting, for each (F ·G)-structure s = (f, g)
on U ,

(F ·G)[σ](s) = (F [σ1](f), G[σ2](g)) ,

where σi = σ
∣∣
Ui

is the restriction of σ o Ui, i = 1, 2.
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More informally, an (F ·G)-structure is an ordered pair formed by an F -structure and a G-
structure over complementary disjoint subsets. A typical (F ·G)-structure can be represented by
Figure 2.3 or by Figure 2.4.

=F·G F G

Figure 2.3: A typical product structure.

=

F ·G F G

Figure 2.4: Alternate representation of a typical product structure.

The product of species is associative and commutative up to isomorphism, but in general F ·G
and G·F are not identical. These properties are easily established by constructing appropriate
(coherent, see [230]) isomorphisms. The multiplication admits the species 1 as neutral element,
and the species 0 as absorbing element, i.e.: 1·F = F ·1 = F and F ·0 = 0·F = 0. Moreover,
multiplication distributes over addition. We leave to the reader to prove these properties as well
as the following proposition (see Exercise 2.4).

Proposition 2.10. Let F and G be two species of structures. Then the series associated with the
species F ·G satisfy the equalities

a) (F ·G)(x) = F (x)G(x),

b) (̃F ·G)(x) = F̃ (x)G̃(x),

c) ZF ·G(x1, x2, x3, . . .) = ZF (x1, x2, x3, . . .)ZG(x1, x2, x3, . . .).

(2.7)

Example 2.11. The preceding proposition, when applied to combinatorial Equation (2.6), yields
the equalities

a)
1

1− x
= ex Der(x),

b)
∏
k≥1

1

1− xk
=

1

1− x
D̃er(x),
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c)
∏
k≥1

1

1− xk
= exp

(
x1 +

x2

2
+
x3

3
+ . . .

)
ZDer(x1, x2, x3, . . .).

One deduces (by simple division) the following expressions for the series associated to the species
Der of derangements:

a) Der(x) =
e−x

1− x
,

b) D̃er(x) =
∏
k≥2

1

1− xk
,

c) ZDer(x1, x2, x3, . . .) = e−(x1+
x2
2

+
x3
3

+...)
∏
k≥1

1

1− xk
.

(2.8)

Note that the classical formula

dn = n!

(
1− 1

1!
+

1

2!
− . . .+ (−1)n

n!

)
,

giving the number of derangements of a set of n elements, is directly obtained from (2.8), a) by
explicitly carrying out the product

∑
n≥0

dn
xn

n!
=

∑
i≥0

(−1)i
xi

i!

∑
j≥0

xj

 .

The reader can calculate explicitly, starting from (2.8), c), the numbers fix Der[n1, n2, . . .], coef-
ficients of the index series ZDer (see Exercise 2.6). As we see, the simple combinatorial equality
S = E·Der contains structural information which goes well beyond the simple enumeration of the
labelled structures.

It is interesting to observe that the species F + F + . . .+ F (n terms), which is denoted nF ,
is also the product of the species n with the species F . This is to say nF = n·F . Once more,
this justifies identifying the integer n with the species n. For the species ℘ of subsets of a set,
introduced in Section 1.1.2, we have the combinatorial equality ℘ = E·E. Translating this equality
into series, we recover the equalities

℘(x) = ex ex = e2x, ℘̃(x) =
1

(1− x)2
,

mentioned in Section 1.2. For the index series Z℘, we also immediately obtain

Z℘(x1, x2, x3, . . .) =
(

exp
(
x1 +

x2

2
+
x3

3
+ . . .

))2
,

and deduce the expression fix℘[n1, n2, . . .] = 2n1+n2+... , which can also be obtained by a direct
combinatorial argument. Similarly, the species ℘[k], of subsets of cardinality k, satisfies the com-
binatorial equality ℘[k] = Ek·E, where Ek denotes the species of sets of cardinality k. A simple
passage to the associated series yields the equalities
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a) ℘[k](x) = ex
xk

k!
,

b) ℘̃[k](k) =
xk

1− x
,

c) Z℘[k](x1, x2, x3, . . .) = exp
(
x1 +

x2

2
+
x3

3
+ . . .

) ∑
n1+2n2+...=k

xn1
1 xn2

2 xn3
3 . . .

1n1n1!2n2n2!3n3n3! . . .
.

The equality ℘[k](x) = ex x
k

k! gives the well-known combinatorial interpretation of binomial coeffi-

cients, |℘[k][n]| =
(
n
k

)
, as the number of k-element subsets of a n-element set. Moreover, the explicit

formula for the numbers fix℘[k][n1, n2, n3 . . .] given in Exercise 2.7 constitutes a generalization of
the notion of binomial coefficients. Of course, we also have the combinatorial equality∑

k≥0

℘[k] = ℘ = E2,

which, by passing to generating series, gives the identity
∑

k≥0

(
n
k

)
= 2n. In virtue of associativity,

the operation of multiplication can be extended to finite families Fi of species, i = 1, . . . , k, by
defining the product F1·F2 · . . . ·Fk by

(F1·F2· . . . ·Fk)[U ] =
∑

U1+U2+...+Uk=U

F1[U1]× F2[U2]× . . .× Fk[Uk].

Here the (disjoint) sum is taken over all families (Ui)1≤i≤k of pairwise disjoint subsets of U whose
union is U . The transport along a bijection σ : U −→ V is defined in the following component-
wise manner: for si ∈ Fi[Ui], i = 1, . . . , k, set

(F1·F2· . . . ·Fk)[σ] ((si)1≤i≤k) = (Fi[σi](si))1≤i≤k,

where σi = σ|Ui denotes the restriction of σ to Ui. The product
∏
i∈I Fi of an infinite family of

species (Fi)i∈I can also be defined provided that this family is multiplicable (see Exercise 2.9).
An example of a multiplicable infinite family is given in Example 2.11. In the case of a finite family
(Fi)1≤i≤k where all of its members are equal to the same species F , the product F ·F · . . . ·F (k
factors) is denoted F k. An F k-structure on a set U is therefore a k-tuple (s1, s2, . . . , sk) of disjoint
F -structures whose union of underlying sets is U .

Example 2.12. Taking F = E+, the species of non-empty sets, we obtain the species Bal[k] = (E+)k

of all ballots having k levels (i.e., ordered partitions having k blocks; see Figure 2.5). We therefore
have

a) Bal[k](x) = (ex − 1)k,

b) B̃al[k](x) =

(
x

1− x

)k
,

c) ZBal[k](x1, x2, x3, . . .) =
(

exp
(
x1 +

x2

2
+
x3

3
+ . . .

)
− 1
)k
.

(2.9)
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Since the family (E+)k, k = 0, 1, 2, . . ., is summable, one obtains by summation (see also Sec-
tion 1.1.5) the species Bal of all ballots (independent of the number of levels):

Bal =
∑
k≥0

Bal[k] =
∑
k≥0

(E+)k.

A simple summation of the associated series gives

a) Bal(x) =
1

2− ex
,

b) B̃al(x) =
1− x
1− 2x

,

c) ZBal(x1, x2, x3, . . .) =
1

2− exp
(
x1 + x2

2 + x3
3 + . . .

) .
(2.10)

Lev. 1 Lev. 2 Lev. 3 Lev. 4 Lev. 5

Figure 2.5: A Bal[5]-structure.

Example 2.13. Consider the species L of linear orderings and its restriction Lk to sets of length
k. One has the combinatorial equalities

a) Lk = Xk, k = 0, 1, 2, . . . ;

b) L = 1 +XL =
∑
k≥0

Xk =
∏
i≥0

(
1 +X2i

)
,

where X denotes the species of singletons. For a definition of infinite product of species, see
Exercise 2.9.

2.2 Substitution and differentiation

2.2.1 Substitution of species of structures

As a motivating example, let us consider an endofunction ϕ ∈ End[U ] of a set U , determined by
its functional digraph, such as that of Figure 2.6 a). Two kinds of points (elements of U) can be



2.2. SUBSTITUTION AND DIFFERENTIATION 37

distinguished

i) the recurrent points, i.e., those x ∈ U for which there exists a k > 0 such that ϕk(x) = x;
these are the elements located on cycles;

ii) the non-recurrent points, i.e., those x for which ϕk(x) 6= x for all k > 0.

=

a) b)

Figure 2.6: An endofunction as a permutation of trees.

Figure 2.6 b) shows how the endofunction ϕ can naturally be identified with a permutation of
disjoint rooted trees. The naturality originates from the fact that we need not use the specific
nature of the underlying points in order to pass from Figure 2.6 a) to Figure 2.6 b). Clearly, such
an analysis can be carried out no matter which endofunction is given. Thus, every End-structure
can naturally be identified with an S-structure placed on a set of disjoint A-structures, where, as
previously, End denotes the species of endofunctions, S, the species of permutations and A, the
species of rooted trees. In a more concise manner, we say that every End-structure is an S-assembly
of A-structures. This situation is summarized by the combinatorial equation

End = S◦A, or End = S(A).

This simple equality expresses the fact that every endofunction is essentially a permutation of
(disjoint) rooted trees. It is a typical example of substitution of species, also called the (partitional)
composition of species, which can be defined in general as follows.

Definition 2.14. Let F and G be two species of structures such that G[∅] = ∅ (i.e., there is no
G-structure on the empty set). The species F ◦ G, also denoted F (G), called the (partitional)
composite of G in F , is defined as follows: an (F ◦ G)-structure on U is a triplet s = (π, ϕ, γ),
where

i) π is a partition of U ,

ii) ϕ is an F -structure on the set of classes of π,

iii) γ = (γp)p∈π, where for each class p of π, γp is a G-structure on p.
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In other words, for any finite set U , one has

(F ◦G)[U ] =
∑

π partition of U

F [π]×
∏
p∈π

G[p], (2.11)

the (disjoint) sum being taken over the set of partitions π of U (i.e., π ∈ Par[U ]). The transport
along a bijection σ : U −→ V is carried out by setting, for any (F ◦G)-structure s = (π, ϕ, (γp)p∈π)
on U ,

(F ◦G)[σ](s) =
(
π, ϕ, (γp)p∈π

)
, (2.12)

where

i) π is the partition of V obtained by transport of π along σ,

ii) for each p = σ(p) ∈ π , the structure γp is obtained from the structure γp by G-transport
along σ |p,

iii) the structure ϕ is obtained from the structure ϕ by F -transport along the bijection σ induced
on π by σ.

In a more visual fashion, we say that an (F ◦ G)-structure is an F -assembly of (disjoint)
G-structures. Figures 2.7 and 2.8 give alternate graphical illustrations of this concept. The proof
that F ◦ G as defined is a species of structures (i.e., that the transports satisfy the functoriality
properties) is left to the reader. When F is the species of sets, an (E ◦G)-structure is more simply

=

G

G
G

G
G

FF   G

Figure 2.7: An F -assembly of G-structures.

F  G

G= =

F
G

ο
G

GF

G
G

Figure 2.8: An F of G structure.

called an assembly of G-structures. The passage from F ◦G to its generating and cycle index
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series is more delicate to analyze than in the case of sum and product of species. In fact, although
the formula (F ◦G)(x) = F (G(x)) is valid, the corresponding identity does not hold in general for

unlabeled enumeration ˜(F ◦G)(x) 6= F̃ (G̃(x)), as shown in Exercise 2.16. This is one of the reasons
for which the introduction of cycle index series is necessary, as shown by the following result. A
complete proof is given in Chapter 4 of [22].

Theorem 2.15. Let F and G be two species of structures and suppose that G[∅] = ∅. Then the
series associated to the species F ◦G satisfy the equalities

a) (F ◦G)(x) = F (G(x)),

b) (̃F ◦G)(x) = ZF

(
G̃(x), G̃(x2), G̃(x3), . . .

)
,

c) ZF◦G(x1, x2, x3, . . .) = ZF (ZG(x1, x2, . . .), ZG(x2, x4, . . .), . . .) .

(2.13)

The index series given in the last formula is called the plethystic substitution of ZG in ZF ,
and is denoted by ZF ◦ZG (or ZF (ZG)).

Definition 2.16. Let f = f(x1, x2, x3, . . .) and g = g(x1, x2, x3, . . .) be two formal power series.
Then the plethystic substitution f◦g is defined by (f◦g)(x1, x2, x3, . . .) = f(g1, g2, g3, . . .), where
the following notational convention is used:

gk = g(xk, x2k, x3k, . . .), k = 1, 2, 3, . . . , (2.14)

i.e., the power series gk is obtained by multiplying by k the index of each variable appearing in g.
Observe that gk = xk◦g = g◦xk.

Example 2.17. From the combinatorial equation End = S ◦ A, one immediately deduces the
formulas

a) End(x) = (S◦A)(x) = S(A(x)) =
1

1−A(x)
,

b) Ẽnd(x) = (̃S◦A)(x) = ZS

(
Ã(x), Ã(x2), Ã(x3), . . .

)
=

1

(1− Ã(x))(1− Ã(x2))(1− Ã(x3)) . . .
,

c) ZEnd = (ZS ◦ZA)(x1, x2, x3, . . .) = (1− x1◦ZA)−1(1− x2◦ZA)−1(1− x3◦ZA)−1 · · ·,

which relate the series End(x), Ẽnd(x) and ZEnd to the series A(x), Ã(x) and ZA. These series
are studied more deeply in Chapter 3 of [22]. Figure 2.9 shows that the species A of rooted trees
satisfies the combinatorial equation A = X ·E(A), where E designates the species of sets. Passing
to series gives the formulas

a) A(x) = xeA(x),

b) Ã(x) = x exp
(
Ã(x) +

Ã(x2)

2
+
Ã(x3)

3
+ . . .

)
,

c) ZA(x1, x2, . . .) = x1 exp
(
ZA(x1, x2, . . .) +

1

2
ZA(x2, x4, . . .) + . . .

)
.

(2.15)

It is shown in Chapter 3 of [22] how these formulas allow recursive, and even explicit, calculation
of the series A(x), Ã(x) and ZA(x1, x2, x3, . . .).
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=

Figure 2.9: A rooted tree is a set of rooted trees attached to a root.

Example 2.18. Figure 2.10 shows that the species Bal of ballots satisfies the combinatorial equa-
tion

Bal = L◦E+, (2.16)

where L is the species of linear orderings and E+ that of non-empty sets. The identities (2.10) for
the series associated to the species Bal can be deduced directly from this observation. Consider

=

Figure 2.10: A ballot is a list of parts.

Par, the species of partitions. Since every partition is naturally identified to a set of non-empty
disjoint sets (see Figure 2.11), we obtain the combinatorial equation

Par = E(E+). (2.17)

The following formulas are then immediately deduced.

a) Par(x) = ee
x−1,

b) P̃ar(x) =
∏
k≥1

1

1− xk
,

c) ZPar(x1, x2, x3, . . .) = exp
∑
k≥1

1

k

(
exp
(
xk +

x2k

2
+
x3k

3
+ . . .

)
− 1
)
.

(2.18)

Example 2.19. In a similar fashion, since every permutation is a set of disjoint cycles (see Fig-
ure 2.12), we have the combinatorial equation S = E ◦C, where C is the species of cycles (cyclic
permutations). It follows that S(x) = 1

1−x = eC(x) and we recover C(x) = log 1
1−x . Moreover, we
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=

Figure 2.11: A partition is a set of parts.

=

Figure 2.12: A permutation is a set of cycles.

have the remarkable identities

a)
∏
k≥1

1

1− xk
= S̃(x) = ZE

(
C̃(x), C̃(x2), . . .

)
= exp

∑
n≥1

1

k

xk

1− xk

 ,

b)
1

1− x1

1

1− x2

1

1− x3
· · · = ZS(x1, x2, x3, . . .) = exp

∑
k≥1

1

k
ZC(xk, x2k, x3k, . . .)

 .

(2.19)

This last identity permits the explicit calculation of the index series ZC of the species of cycles (see
Exercise 2.21):

ZC(x1, x2, x3, . . .) =
∞∑
k=1

φ(k)

k
log

1

1− xk
, (2.20)

where φ denotes the arithmetic Euler φ-function.

Example 2.20. The species G of graphs is related to the species Gc of connected graphs by the
combinatorial equation G = E(Gc), since every graph is an assembly of connected graphs.

More generally, if two species F and F c are related by a combinatorial equation of the form
F = E(F c), we say that F c is the species of connected F -structures. We then have

a) F (x) = eF
c(x),
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b) F̃ (x) = exp
∑
k≥1

1

k
F̃ c(xk),

c) ZF (x1, x2, x3, . . .) = exp
∑
k≥1

1

k
ZF c(xk, x2k, x3k, . . .).

It is interesting to note that we can also express the series F c(x), F̃ c(x) and ZF c as functions of
the series F (x), F̃ (x) and ZF (see Exercise 2.22).

The species X of singletons is the neutral element for the substitution of species: F =
F (X) = F ◦X = X ◦F = X(F ). Substitution is associative (up to isomorphism of species). For
any species of structures G, the condition G[∅] = ∅ is equivalent to G(0) = 0. If G(0) = 0, one
recursively defines the successive iterates G〈n〉 of G by the recursive scheme

G〈0〉 = X, and G〈n+1〉 = G◦G〈n〉 (= G〈n〉◦G).

Example 2.21. Consider the species Preo of all the preorders (i.e., reflexive and transitive rela-
tions) and the species Ord of all order relations (i.e., antisymmetric preorders). Since every preorder
“≺” induces, in a natural manner, an order on an appropriate quotient set (see Figure 2.13), we
obtain the combinatorial equation Preo = Ord(E+). The computation of the power series Preo(x),

Ord(x), P̃reo(x), Õrd(x), ZPreo and ZOrd is an open problem. Nevertheless, Theorem 2 implies the
following relations:

a) Preo(x) = Ord(ex − 1),

b) P̃reo(x) = ZOrd

(
x

1− x
,

x2

1− x2

x3

1− x3
, . . .

)
,

c) ZPreo(x1, x2, x3, . . .) = ZOrd

(
ex1+

x2
2

+... − 1, ex2+
x4
2

+... − 1, . . .
)

.

=

Figure 2.13:
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2.2.2 The derivative of a species of structures

Given an arbitrary species of structures F , we propose to construct another species G so that
their respective generating series satisfy G(x) = d

dxF (x). This is equivalent to requiring that
|G[n]| = |F [n+ 1]|, n = 0, 1, 2, . . . . Hence the number of G-structures on an arbitrary finite set U
should be equal to the number of F -structures on the set U to which a “new” element has been
added. This suggests the following definition:

Definition 2.22. Let F be a species of structures. The species F ′ (also denoted by d
dXF (X)), called

the derivative of F , is defined as follows: an F ′-structure on U is an F -structure on U+ = U ∪{∗},
where ∗ = ∗U is a element chosen outside of U . In other words, for any finite set U , one sets
F ′[U ] = F [U+], where U+ = U+{∗}. The transport along a bijection σ : U −→ V is simply carried
out by setting, for any F ′-structure s on U , F ′[σ](s) = F [σ+](s), where σ+ : U + {∗} −→ V + {∗}
is the canonical extension of σ obtained by setting σ+(u) = σ(u), if u ∈ U , and σ+(∗) = ∗.
Figures 2.14 and 2.15 illustrate graphically the concept of F ′-structure.

F F=

Figure 2.14: A typical structure of species F ′.

F F

=

Figure 2.15: Alternate representation of a typical structure of species F ′

Remark 2.23. Observe that the supplementary element ∗ is not a member of the underlying set
of the F ′-structure on U . Also note that the element ∗ has been placed in an arbitrary position
in Figure 2.15 to emphasize that the set U + {∗} on which the F -structure is constructed is
not otherwise structured. The careful reader may ask himself how does one systematically (and
canonically) choose a element ∗ = ∗U outside each given set U . Exercise 2.29 describes a classic
solution to this problem.

Example 2.24. As a standard illustration, we analyze the derivative C′ of the species C of cyclic
permutations. By definition, a C′-structure on the set U = {a, b, c, d, e} is a C-structure on U +{∗}.
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It is identified in a natural manner (forgetting ∗) with a linear ordering placed on U (see Figure 2.16).
In other words, we have shown the combinatorial equation C′ = L. Passing to generating series
yields C′(x) = L(x) = 1

1−x , and, by integration,

C(x) =

∫ x

0

dx

1− x
= log

1

1− x
,

which gives a third way to obtain the series C(x).

a

cb b

a

c
=

d dee

Figure 2.16: Breaking off a cycle at the special point gives a list.

The relation between the derivative of species and the corresponding series is summarized in
the following proposition.

Proposition 2.25. Let F be a species of structures. One has the equalities

a) F ′(x) =
d

dx
F (x),

b) F̃ ′(x) =

(
∂

∂x1
ZF

)
(x, x2, x3, . . .),

c) ZF ′(x1, x2, x3, . . .) =

(
∂

∂x1
ZF

)
(x1, x2, x3, . . .).

Example 2.26. Consider the species Par ′, derivative of the species Par of partitions. Figure 2.17
shows that a Par ′-structure on a set U can be identified in a natural way to a partial partition
on U , that is to say, a partition on a part V of U : simply take V = U \ W , where W is the
class containing ∗. Let ParP be the species of partial partitions. We then have the combinatorial
equation ParP = Par ′. Applying the preceding proposition to the known series for the species Par
yields

a) ParP (x) = ex+ex−1,
b) ZParP (x1, x2, . . .) = exp

∑
k≥1

1
k

(
xk + exp(xk + x2k

2 + . . .)− 1
)
.

(2.21)

In particular, letting xi := xi, we obtain

P̃arP (x) =

(
1

1− x

)2 ∏
k≥2

1

1− xk
.
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=

Figure 2.17: Partition with a privileged part.

Note that ParP also satisfies the combinatorial equation ParP = E · Par, as is shown in the same
Figure 2.17. This allows for a calculation of the series associated to ParP in a different fashion.
For example,

ParP (x) = (E · Par)(x) = E(x)Par(x) = exPar(x),

agreeing with (2.21) a) obtained earlier.

Example 2.27. The derivative E′ of the species E of sets satisfies the combinatorial equation
E′ = E. This constitutes a combinatorial version of the classic equality d

dxe
x = ex. For the species

L of linear orderings, Figure 2.18 shows that L′ = L2 (= L · L), reflecting combinatorially the
series identity

d

dx

(
1

1− x

)
=

(
1

1− x

)2

.

=

Figure 2.18: Cutting up a list at the special point.

The operation of differentiation can be iterated. For F ′′ = (F ′)′, we simply add successively
two distinct elements, ∗1 and ∗2, to the underlying set. For example, we have the combinatorial
equation C′′ = L2. More generally, we set F (0) = F and F (k) = (F (k−1))′ when k ≥ 1. An F (k)-
structure on U is then equivalent to an F -structure on U ∪ {∗1, ∗2, . . . , ∗k}, where ∗i, 1 ≤ i ≤ k, is
an ordered sequence of k additional distinct elements (see Figure 2.19, where k = 5).

Example 2.28. Consider the species a of trees. Figure 2.20 immediately shows that we have the
species identity a′ = F = E(A), where F is the species of forests of rooted trees (i.e., disjoint
sets of rooted trees). One can then assert, a priori, that the series for a and F are related by the
following equalities.
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F

4
=

5

2

3

1

(5)
F

Figure 2.19: Higher order derivatives of a species.

a) F(x) =
d

dx
a(x),

b) F̃(x) =

(
∂

∂x1
Za

)
(x, x2, x3, . . .),

c) ZF (x1, x2, x3, . . .) =

(
∂

∂x1
Za

)
(x1, x2, x3, . . .).

=

Figure 2.20: A tree with a special point decomposes as a forest.

Remark 2.29. To underline how the combinatorial differential calculus of species agrees with the
classical differential calculus of formal power series, we mention that the chain rule admits the
combinatorial equivalent (F ◦G)′ = (F ′ ◦G) · G′, where G is a species such that G(0) = 0 (i.e.,
G[∅] = ∅). Consideration of Figure 2.21 suffices to show the validity of this formula. It is easily
verified that the other usual rules (F +G)′ = F ′+G′, and (F ·G)′ = F ′ ·G+F ·G′ are also satisfied
in the context of species.

Nevertheless, one must be prudent when establishing analogies with classical differential cal-
culus. For instance, although the differential equation y′ = f(x) with initial condition y(0) = 0,
always has a unique solution in the setting of formal power series, one can show that the analogous
equation Y ′ = F (X), with Y (0) = 0, can have many non-isomorphic solutions in the algebra of
species of structures (see Exercise 2.37). On the other hand, the equation Y ′ = XE3(X), with
Y (0) = 0, has no species of structures solution.
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= =
F F

=

(        )F  G F  G
G

G

G

G

G

G

Figure 2.21: Combinatorial chain rule.

Remark 2.30. For other variants of the theory of the species of structures (for example that of
L-species introduced in Chapter 5 of [22]) the existence and uniqueness of solutions of combinatorial
differential equations coincides with the formal power series setting.

2.3 Pointing and Cartesian product

2.3.1 Pointing in a species of structures

Pointing corresponds at the combinatorial level to the differential operator x d
dx , whose effect on

formal power series is:

x
d

dx

∑
n≥0

fn
xn

n!
=
∑
n≥0

n fn
xn

n!
.

Definition 2.31. Let F be a species of structures. The species F
•
, called F dot, is defined as

follows: an F
•
-structure on U is a pair s = (f, u), where

i) f is an F -structure on U ,

ii) u ∈ U (a distinguished element).

The pair (f, u) is called a pointed F -structure (pointed at the distinguished element u). In other
words, for any finite set U , F

•
[U ] = F [U ] × U ( set-theoretic Cartesian product). The transport

along a bijection σ : U −→ V is carried out by setting F
•
[σ](s) = (F [σ](f), σ(u)), for any F

•
-

structure s = (f, u) on U . A typical F
•
-structure can be represented graphically by circling the

pointed element (see Figure 2.22). The enumeration of the F
•
-structures satisfies |F •[n]| = n |F [n]|,

for all n ≥ 0.

Example 2.32. As a first illustration, let us point the species a of trees. We then obtain the species
A of rooted trees: a

•
= A. Indeed, a rooted tree is nothing more than a tree with a distinguished

element, its root (see Figure 2.23).

It is important to note that the distinguished element u of an F
•
-structure belongs to the

underlying set U , whereas the element ∗ of an F ′-structure is always outside of the underlying set
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=

FF

Figure 2.22: Pointing an F -structure.

Figure 2.23: A rooted tree.

U . The operations of pointing and derivation are related by the combinatorial equation F
•

= X ·F ′,
where X denotes the species of singletons. To see this, examine Figure 2.24. The distinguished
element (the circled singleton) in the F

•
-structure on the left is taken aside and is replaced by a ∗.

This gives , in a natural fashion an X ·F ′-structure. From the combinatorial equation F
•

= X ·F ′,

=

F F

Figure 2.24: Pointing in term of derivation.

we can deduce the main properties of the operation of pointing (see Exercise 2.40), as well as the
following proposition concerning the passage to the generating and index series.

Proposition 2.33. Let F be a species of structures. One has the equalities

a) F
•
(x) = x

d

dx
F (x),

b) F̃ •(x) = x

(
∂

∂x1
ZF

)
(x, x2, x3, . . .),

c) ZF •(x1, x2, x3, . . .) = x1

(
∂

∂x1
ZF

)
(x1, x2, x3, . . .).
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Example 2.34. In [158], Joyal uses the operation of pointing to determine, in a simple and elegant
fashion, the number αn of trees on a set of n elements (see also [133], 3.3.19). To this end, point
twice the species a of trees. This gives, by definition, the species V of vertebrates: V = a

••
.

Equivalently, we have V = A•. Hence, a vertebrate is a bipointed tree (or a pointed rooted
tree). It possesses in a natural fashion a vertebral column (see Figure 2.25), that is, the unique
elementary path (refer to the thick lines) from the first distinguished vertex (called the tail vertex,
labelled by 1) to the second distinguished vertex (called the head vertex, labelled by 2). Note that

=
1 2

Figure 2.25: A vertebrate.

the tail vertex can coincide with the head vertex. In this case, the vertebrate is called degenerate.
Denote by νn, the number of vertebrates on a set of n elements. We then have νn = n2αn, since
there are n possible choices for the tail vertex and n other (independent) choices for the head vertex.
We next calculate νn in another fashion. The vertebral column determines in a natural manner a
non-empty sequence of disjoint rooted trees (see Figure 2.26). Thus the species V of vertebrates

=
1 2

Figure 2.26: A vertebrate as a list of rooted trees.

satisfies the combinatorial equation V = L+(A). Replacing in this equality the species L+ by the
equipotent species S+ of non-empty permutations yields the equipotence V ≡ S+(A). It follows
that, on a given set, there are as many vertebrates as (non-empty) permutations of rooted trees
and then, as many as (non-empty) endofunctions, since S(A) = End. Thus, we have established
the equipotence V ≡ End+, from which we deduce νn = nn, n ≥ 1, since |End[n]| = nn. From
n2αn = νn = nn, n ≥ 1, we conclude that αn = nn−2, when n ≥ 1. This is the classic formula of
Cayley for the number of labelled trees. Incidentally, we have also shown the equality an = nn−1,
where an denotes the number of rooted trees on n elements, since an = nαn (n choices for the
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root). For the cycle index series, the combinatorial equation V = L+(A) immediately gives

ZV(x1, x2, x3, . . .) =
ZA(x1, x2, x3, . . .)

1− ZA(x1, x2, x3, . . .)
,

since ZL+ = x1/(1− x1). It is interesting to note that the equipotence V ≡ End+ is not an
isomorphism. In fact,

ZEnd+ = ZS+◦ZA

=
1

(1− ZA(x1, x2, x3, . . .)) (1− ZA(x2, x4, x6, . . .)) . . .
− 1,

so that ZV 6= ZEnd+ , which implies V 6= End+.

Consider now a species F possessing a notion of connected components, that is to say (as
we have seen in Section 2.2) of the form F = E(F c), where F c is the species of connected F -
structures. The operation of pointing permits a straightforward calculation of the average number,
κn(F ), of connected components of a random F -structure on n elements, by the formula

κn(F ) =
|(F c · F )[n]|
|F [n]|

, n ≥ 0, (2.22)

if |F [n]| 6= 0. Indeed, as an E
•
(F c)-structure can be identified with an F -structure in which a

connected component has been distinguished, it suffices to substitute the species F c in the species
E
•

= X · E to obtain (2.22). Applying formula (2.22) to the species Par, S and G, gives:

– The average number of classes of a random partition on n elements is, in virtue of equations
in Example 2.26,

κn(Par) =
Bn+1

Bn
− 1, (2.23)

where Bn denotes the number of partitions of a set having n elements (Bell number).

– The average number of cycles of a random permutation on n elements is

κn(S) = 1 +
1

2
+

1

3
+ . . .+

1

n
∼ log(n). (2.24)

– The average number of connected components of a random simple graph on n vertices is

κn(G) = 2−(n2)
n∑
i=1

(
n

i

)
2(n−i2 ) |Gc[i]|, (2.25)

where |Gc[i]| is the number of connected graphs on i elements.
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2.3.2 Cartesian product of species of structures

The Cartesian product corresponds at a combinatorial level to the coefficient-wise product of ex-
ponential generating series, called Hadamard product and denoted by ×:∑

n≥0

fn
xn

n!

×
∑
n≥0

gn
xn

n!

 =
∑
n≥0

fn gn
xn

n!
. vingtun

Definition 2.35. Let F and G be two species of structures. The species F×G, called the cartesian
product of F and G, is defined as follows: an (F×G)-structure on a finite set U is a pair s = (f, g),
where

i) f is an F -structure on U ,

ii) g is a G-structure on U .

In other words, for all finite sets U , one has (F ×G)[U ] = F [U ]×G[U ] (Cartesian product). The
transport along a bijection σ : U −→ V is carried out by setting (F ×G)[σ](s) = (F [σ](f), G[σ](g)),
for any (F ×G)-structure s = (f, g) on U . An arbitrary (F ×G)-structure can be represented by
a diagram of the type of Figure 2.27. The labelled enumeration of F ×G-structures satisfies

|(F ×G)[n]| = |F [n]|·|G[n]|, n ≥ 0.

F G

Figure 2.27: A typical structure of species F ×G.

Remark 2.36. We underline that F × G is different from F · G: each of the structures f and g
appearing in the formation of an (F × G)-structure on U , has underlying set U (in its entirety).
However, for (F ·G)-structures (f, g) on U , the underlying sets U1 and U2 of f and g are disjoint
(and U1 ∪ U2 = U). The product F ×G is sometimes called the superposition of F and G since
an (F ×G)-structure on U is obtained by superposing an F -structure on U and a G-structure on
U .

Example 2.37. Consider the species C of oriented cycles and the species a of trees. Figure 2.28
illustrates the difference between an (a × C)-structure and an (a · C)-structure on a set of seven
elements.
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Figure 2.28: An (a× C)-structure versus an (a · C)-structure.

In order to describe the compatibility of the Cartesian product with passage to series, it is
necessary to first define the Hadamard product f × g of two index series

f(x) =
∑

fn
xn

aut(n)
, g(x) =

∑
gn

xn

aut(n)
,

where x = (x1, x2, x3, . . .), and n = (n1, n2, n3, . . .). These series are multiplied coefficient-wise:

(f × g)(x) =
∑

fn gn
xn

aut(n)
.

We then have the following result, whose proof is left as an exercise.

Proposition 2.38. Let F and G be two species of structures. Then the series associated to the
species F ×G satisfy the equalities

a) (F ×G)(x) = F (x)×G(x),

b) ˜(F ×G)(x) = (ZF × ZG)(x, x2, x3, . . .),

c) ZF×G(x1, x2, x3, . . .) = ZF (x1, x2, x3, . . .)× ZG(x1, x2, x3, . . .).

Example 2.39. Consider the Cartesian product C × ℘ of the species C of oriented cycles by the
species ℘ of subsets (of sets). A (C×℘)-structure on a set U is then an oriented cycle on U on which
one has superimposed a subset V of U (see Figure 2.29). In other words, a (C × ℘)-structure is an
oriented cycle in which certain elements have been distinguished (the circled points in Figure 2.29).
We now compute explicitly the series associated to this species. Since |C[n]| = (n− 1)! if n ≥ 1 and
|℘[n]| = 2n, we obtain

|(C × ℘)[n]| =

{
(n− 1)! 2n, if n ≥ 1,

0, otherwise.

We conclude that

(C × ℘)(x) =
∑
n≥1

(n− 1)!
(2x)n

n!

= log

(
1

1− 2x

)
.
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U

=

V

Figure 2.29: Oriented cycle with distinguished points.

A similar calculation, using the fact that fix ℘ [n1, n2, . . .] = 2n1+n2+... and formula (2.20) for ZC ,
yields

ZC×℘(x1, x2, x3, . . .) =
∑
k≥1

φ(k)

k
log

(
1

1− 2xk

)
.

It follows that the type generating series of (C × ℘)-structures is of the form

˜(C × ℘)(x) =
∑
k≥1

φ(k)

k
log

(
1

1− 2xk

)
.

We finally deduce that the number of unlabeled (C × ℘)-structures on a set having n elements is:

[xn] ˜(C × ℘)(x) =
1

n

∑
d|n

φ(d)2
n
d .

The species E of sets is the neutral element for the Cartesian product, i.e., for any species F ,
one has

E × F = F × E = F.

Indeed, superimposing an F -structure on a set structure reduces to simply considering the F -
structure. By restricting to the cardinality n, it is easy to verify that

En × F = F × En = Fn.

As the Cartesian product distributes over addition (see Exercise 2.44), we recover the canonical
decomposition of a species

F = F × E
= F × (E0 + E1 + E2 + . . .+ En + . . .)
= F0 + F1 + F2 + . . .+ Fn + . . . .

For the Cartesian product, the operation of pointing can be distributed on one or the other factor:

(F ×G)
•

= F
• ×G = F ×G•,
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F G

Figure 2.30: Pointing a F ×G-structure.

as can be seen from Figure 2.30. In particular, by taking G = E (the species of sets), we obtain
the equalities

F
•

= (F × E)
•

= F × E• = F × (X · E).

Hence, the operation of pointing can be expressed in terms of the Cartesian product and ordinary
product.

It is interesting to note that the law of simplification (by a non-zero factor) is not valid for the
Cartesian product of species. For example, L× L = S × L, but L 6= S.

To end this section, let us now consider the series associated with the species a×C mentioned
in Example 6. As |a[n]| = nn−2 and |C[n]| = (n− 1)! if n ≥ 1, we obtain the generating series

(a× C)(x) =
∑
n≥1

nn−3xn.

For the index series Za×C , the situation is more delicate since we do not yet know an expression for
Za. Nevertheless, we can already affirm that many coefficients of Za×C are zero. Indeed, we have
seen the series ZC in the form

ZC =
∑
k≥1

φ(k)

k
log

(
1

1− xk

)
=
∑
k,m≥1

φ(k)xmk
km

.

Hence, only monomials of the form xmk enter into play in the expression of ZC . It then follows that
fix C[n1, n2, . . .] = 0, except if (n1, n2, . . .) = (0, 0, . . . , i, 0, . . .), i = nk, k ∈ N. We can thus assert
(without knowing Za) that Za×C is of the form

Za×C = w1(x1) + w2(x2) + . . .+ wk(xk) + . . . ,

for certain formal power series wk(x) ∈ Q[[x]]. In fact, these series are identically zero, except w1(x)
and w2(x). Thus, Za×C only depends upon x1 and x2:

Za×C = w1(x1) + w2(x2).

The series Za, w1(x1) and w2(x2) are explicitly calculated in Chapter 4 of [22].
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2.4 Functorial composition

Definition 2.40. Let F and G be two species of structures. The species F �G (also denoted by
F [G]), called the functorial composite of F and G, is defined as follows: an (F �G)-structure on
U is an F -structure placed on the set G[U ] of all the G-structures on U . In other words, for any
finite set U , (F �G)[U ] = F [G[U ]]. The transport along a bijection σ : U −→ V is carried out by
setting

(F �G)[σ] = F [G[σ]] (2.26)

(i.e., F -transport along the bijection G[σ]). As a functor, the species F �G is the composite of the
functors F and G, hence its name. The notation � is used in this text to avoid ambiguity with
the substitution (partitional composition) of species of structures. A generic (F �G)-structure on
U can be represented by a diagram of the type in Figure 2.31, where, on the right hand side, it is
understood that the totality of G-structures on U appear. The labelled enumeration of the F �G-
structures satisfies |(F �G)[n]| = |F [gn]|, with gn = |G[n]|, which corresponds to an operation on
the exponential formal power series, also denoted by � :∑

n≥0

fn
xn

n!

 �

∑
n≥0

gn
xn

n!

 =
∑
n≥0

fgn
xn

n!
,

under the hypothesis that gn ∈ N, for any n ∈ N.

G

G

G

G
=

G

F   G F

Figure 2.31: A typical F �G-structure.

Example 2.41. Using functorial composition of species, we can express a variety of graphs classes
(simple, directed, with or without loops, etc.) in terms of simple species of structures. For example,
the species G of all simple graphs (without loops) can be expressed as G = ℘�℘[2], where ℘ denotes
the species of subsets and ℘[2], that of subsets with two elements. Indeed a ℘[2]-structure on a set
amounts to considering a pair of elements, joined by a segment in Figure 2.32 a). Such a pair of
elements is called an edge. Moreover, a graph on a set U is nothing else but a selection among all
possible edges. There is then a ℘-structure on the set of all ℘[2]-structures on U . The reader can
verify without difficulty that the transport of structures is as described in (2.26). Observe that,
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since ℘ = E · E and ℘[2] = E2·E, the species of graphs can also be expressed in the form

G = (E · E) � (E2 · E), (2.27)

which only uses the species of sets, the product, the functorial composition, and the restriction to
the cardinality 2.

Figure 2.32: a) A typical ℘[2]-structure. b) A typical ℘�℘[2]-structure.

The operation � is clearly associative but is not commutative (not even up to isomorphism).
For example, the species ℘[2] �℘ is identified with the species of pairs of subsets. It is not
isomorphic to the species G = ℘�℘[2] of graphs. The species E

•
of pointed sets is the neutral

element for the operation � (see Exercise 2.53), i.e., for any species F , F �E
•

= E
•
�F = F .

In order to describe the behavior of the composition of species with respect to power series, it is
convenient to first define a corresponding operation ZF �ZG in the context of cycle index series. It
clearly follows from the definition of the transport of (F �G)-structures that

fix (F �G)[σ] = fixF [G[σ]]

= fixF [(G[σ])1, (G[σ])2, . . .],

for any permutation σ where [(G[σ])1, (G[σ])2, . . .] denotes the cycle type of the permutation G[σ],
as defined in Section 1.2. The following proposition shows that the index series ZG completely
determines this cycle type.

Proposition 2.42. Let G be a species of structures, σ ∈ Sn, and k ≥ 1. Then the number of cycles
of length k in G[σ] is given by

(G[σ])k =
1

k

∑
d|k

µ(
k

d
) fixG[σd], (2.28)

where µ denotes the Möbius function for positive integers.

Proof. For any permutation β, and any k ≥ 1,

fixβk =
∑
d|k

d βd. (2.29)
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Indeed, an element is left fixed by the permutation βk if and only if it is found in a cycle of β of
length d, where d divides k. By applying Möbius inversion to (2.29), we deduce

βk =
1

k

∑
d|k

µ(k/d) fixβd. (2.30)

If β = G[σ], then by functoriality βd = G[σd], giving the result.

In other words, the knowledge of the coefficients of the cycle index series ZG make possible the
calculation of all the (G[σ])k. The following definition is thus legitimate.

Definition 2.43. The composite ZF �ZG is defined by the formula

ZF �ZG =
∑
n≥0

1

n!

∑
σ∈Sn

fixF [(G[σ])1, (G[σ])2, . . .] x
σ1
1 xσ22 . . . ,

where (σ1, σ2, . . .) denotes the cycle type of a permutation σ ∈ Sn, n = 0, 1, 2, . . ..

Immediately implied is the following result.

Proposition 2.44. Let F and G be two species of structures. Then the series associated to the
species F �G satisfy the equalities

a) (F �G)(x) = F (x) �G(x),

b) ˜(F �G)(x) = (ZF �ZG)(x, x2, x3, . . .),

c) ZF �G(x1, x2, x3, . . .) = ZF (x1, x2, x3, . . .) �ZG(x1, x2, x3, . . .).

Example 2.45. A particularly interesting case is F = ℘, the species of subsets. Many varieties of
graphs and relations can be described as the composite ℘�G of ℘ and of a given species G. Here
are some examples:

– Simple graphs: G = ℘�℘[2];

– Directed graphs: D = ℘� (E
•× E•);

– m-ary relations: Rel[m] = ℘� (E
•
)×m, where (E

•
)×m = E

•× · · · × E•︸ ︷︷ ︸
(m factors)

.

These species have the respective generating series

G(x) =
∑
n≥0

2(n2)
xn

n!
, D(x) =

∑
n≥0

2n
2 xn

n!
, Rel[m](x) =

∑
n≥0

2n
m xn

n!
.
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We are now going to calculate the cycle index series of such species using the fact that for any
permutation β,

fix℘[β] = 2
∑
k≥1 βk ,

to obtain the following proposition.

Proposition 2.46. For any species of structures G and any permutation σ,

fix (℘�G)[σ] = 2
∑
k≥1(G[σ])k .

Example 2.47. Thus, the cycle index series of a species of the form ℘�G simply depends on
the numbers (G[σ])k. For the three preceding examples, these numbers are given by the following
expressions:

a) (℘[2][σ])k =
1

2

∑
[i,j]=k

(i, j)σiσj + σ2k − σk +
1

2
(k mod 2)σk, (2.31)

b) ((E
• × E•)[σ])k =

∑
[i,j]=k

(i, j)σiσj , (2.32)

c) ((E
•
)×m[σ])k =

∑
[j1,...,jm]=k

j1 . . . jm
k

σj1 . . . σjm , (2.33)

where σ is of cycle type (σ1, σ2, σ3, . . . ), and [j1, . . . , jm] denotes the least common multiple of
j1, . . . , jm and (j1, . . . , jm), the greatest common divisor. These formulas can be established directly
by simple counting arguments. For example, for (2.32), recall that (E

• ×E•)[U ] = U ×U . Then a
pair of elements (a, b) ∈ U ×U , where a belongs to a cycle of length i of σ and b to a cycle of length
j, generates a cycle (a, b) → (σ(a), σ(b)) → (σ2(a), σ2(b)) → . . . of length [i, j]. Each of the σiσj
cycles induces (i, j) = ij/[i, j] such cycles, whence (2.32). Formula (2.33) is proven in the same
manner, by induction on m. A direct combinatorial proof of (2.31) is proposed in Exercise 2.48.
We present in what follows a more algebraic proof, based on relation (2.28). Observe at first that
for any permutation σ,

fix℘[2][σ] =

(
σ1

2

)
+ σ2 (2.34)

since a pair of elements left fixed by σ either consists of a pair of fixed points of σ or of a cycle of
length 2 of σ. We obtain, in virtue of (2.28), (2.30), and (2.34) and the following lemma,

(℘[2][σ])k =
1

k

∑
d|k

µ(k/d)fix℘[2][σd]

=
1

k

∑
d|k

µ(k/d)
1

2

(
(σd)2

1 − (σd)1 + 2(σd)2

)
=

1

2
(
∑

[i,j]=k

(i, j)σiσj − σk + 2σ2k − σkχ(k is even)),

whence formula (2.31).
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Lemma 2.48. For any permutation σ and any k ≥ 1,

a)
1

k

∑
d|k

µ(
k

d
)(σd)2

1 =
∑

[i,j]=k

(i, j)σiσj , (2.35)

b)
1

k

∑
d|k

µ(
k

d
)(σd)2 =

{
σ2k if k is odd,

σ2k − 1
2σk, otherwise.

(2.36)

Proof. To prove (2.35), it suffices to apply Proposition 3 with G = E
•×E•, i.e., to join the identities

(2.28) and (2.32), observing also that for any permutation τ , fix (E
• × E•)[τ ] = τ2

1 . For (2.36), we
have, by (2.30), (σd)2 = 1

2

(
(σ2d)1 − (σd)1) and

(σ2d)1 =
∑
i|2d

i σi

=
∑
j|d

2j σ2j +
∑
i|d

i σi χ(i is odd).

Using the fact that for any function f ,

∑
d|k

µ(
k

d
)
∑
i|d

f(i) = f(k),

we obtain
1

k

∑
d|k

µ(
k

d
)(σd)2 =

1

2k
(2k σ2k + k σk χ(k is odd)− kσk),

whence (2.36).

Combining Propositions 2.47 with the formulas of example 2.47, we find for the species G of
simple graphs, D of directed graphs, and Rel[m] of m-ary relations, that for any permutation σ,

fixG[σ] = 2
1
2

∑
i,j≥1(i,j)σiσj− 1

2

∑
k≥1(k mod 2)σk ,

fixD[σ] = 2
∑
i,j≥1(i,j)σiσj ,

fix Rel[m][σ] = 2
∑
i1,...,im≥1 i1...im σi1 ...σim/[i1,...,im]

.

These expressions permit the calculation of the cycle index series and the type generating series of
these species. For example,

G̃(x) = 1 + x+ 2x2 + 4x3 + 11x4 + 34x5 + 156x6 + 1044x7 + 12346x8 + 274668x9 + . . .
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2.5 Exercises

Exercises for Section 2.1

Exercise 2.1. Let F , G and H be species of structures.

a) Show, by explicitly describing the isomorphisms, that addition has the following properties:

i) (F +G) +H = F + (G+H), (associativity)

ii) F +G = G+ F , (commutativity)

iii) F + 0 = 0 + F = F . (neutral element)

b) Show that the passage to generating and cycle index series preserves the operation of addition
(see the identities in (2.1)).

Exercise 2.2. a) Let (Fi)i∈I be a summable family of species of structures. Show that the sum∑
i∈I Fi of this family, defined by (2.3) and (2.4), is indeed a species of structures.

b) Let (hi(x1, x2, . . . ))i∈I be a family of formal series in the variables x1, x2, . . ., expressed in the
form

hi(x1, x2, . . .) =
∑

n1,n2,...

hi;n1,n2,...
xn1

1 xn2
2 . . .

cn1,n2,...
, i ∈ I,

where cn1,n2,... is a given family of non-zero scalars. By definition, the family

(hi(x1, x2, . . . ))i∈I

is said to be summable if, for each multi-index n1, n2, . . . , one has

cn1,n2,... [xn1
1 xn2

2 . . .]hi(x1, x2, . . .) = hi;n1,n2,... = 0,

except for a finite number of i ∈ I. The sum of the family is the formal series h(x1, x2, . . . )
whose coefficients are given by the (finite) sums

cn1,n2,... [xn1
1 xn2

2 . . .]h(x1, x2, . . .) =
∑
i∈I

hi;n1,n2,....

Show that, if (Fi)i∈I is a summable family of species of structures, then the families of formal
series

(Fi(x))i∈I ,
(
F̃i(x)

)
i∈I

and (ZFi(x1, x2, . . .))i∈I

are summable and that equalities (2.5) hold.

Exercise 2.3. Let F be a species of structures. The even part and odd part of F are the species
defined by the decompositions Feven = F0 + F2 + F4 + . . . and Fodd = F1 + F3 + F5 + . . . . Show
that the following equalities are satisfied:
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a) ZFeven =
1

2
(ZF (x1, x2, x3, x4, . . .) + ZF (−x1, x2,−x3, x4, . . .)),

b) ZFodd
=

1

2
(ZF (x1, x2, x3, x4, . . .)− ZF (−x1, x2,−x3, x4, . . .)).

In the case where F = E, the species of sets, deduce formulas (2.2).

Exercise 2.4. a) Let F , G and H be species of structures. Describe the isomorphisms estab-
lishing the following properties of multiplication:

i) (F ·G)·H = F ·(G·H), (associativity)

ii) F ·G = G·F , (commutativity)

iii) F ·1 = 1·F = F , (neutral element)

iv) F ·0 = 0·F = 0, (absorbing element)

v) F ·(G+H) = F ·G+ F ·H. (distributivity)

b) Prove identities (2.7) concerning the series associated with the product F ·G of two species of
structures.

c) Using the definitions of sum and product of species, prove that, for all integers n ≥ 0, one
has the combinatorial equality

F + F + . . . + F︸ ︷︷ ︸
n times

= n·F,

where, by convention, the n on the right-hand side denotes the species having exactly n
structures on the empty set and no structure on other sets.

d) Let n ≥ 0 be an integer and set F = n!·En and G = Xn. For which values of n are the species
F and G isomorphic?

Exercise 2.5. a) Show that the species ℘, where ℘[U ] = {B | B ⊆ U}, is isomorphic to the
species E · E.

b) Show directly that the number of structures of the species ℘ on a set U that are fixed by a
permutation of U of cycle type (n1, n2, n3, . . . ) is

1n1n1!2n2n2!3n3n3! . . . [xn1
1 xn2

2 xn3
3 . . .]Z℘(x1, x2, x3, . . .) = 2n1+n2+n3+...,

by partitioning the cycles of the permutation according to whether or not they are contained
in the considered subset.

Exercise 2.6. Show that, for the species Der of derangements, one has

fix Der [n1, n2, . . .] = n1!n2! . . .
∑

0≤ik≤nk
k≥1

(−1)i1+i2+... 1n1−i12n2−i2 . . .

i1! i2! . . .
.
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Exercise 2.7. Show that the species ℘[k], where ℘[k][U ] = {B | B ⊆ U and |B| = k}, is isomorphic
to the species Ek · E. Also show that

fix℘[k][n1, n2, n3, . . .] =
∑

k1+2k2+3k3+...=k

∏
i≥1

(
ni
ki

)
.

Exercise 2.8. Let F and G be two species of structures. Show that the family (Fm · Gn)(m,n),
with (m,n) ∈ N× N, is summable and that

F ·G =
∑

(m,n)

Fm·Gn.

Deduce the canonical decomposition of F ·G. (In this problem, Fm denotes the restriction of the
species F to the cardinality m.)

Exercise 2.9. Let (Fi)i∈I be a family of species of structures. By convention, a
∏
i∈IFi-structure

on a finite set U is a family (si)i∈I where for each i ∈ I one has si ∈ Fi[Ui] for a subset Ui ⊆ U , and
the subsets Ui are required to be pairwise disjoint and to satisfy

⋃
i∈I Ui = U . The family (Fi)i∈I

is said to be multiplicable if for any finite set U , the set of
∏
i∈I Fi-structures on U is finite.

a) For a multiplicable family (Fi)i∈I of species, define the species product
∏
i∈I Fi (do not forget

the transports of structures).

b) Show that a non-empty family of species (Fi)i∈I is multiplicable if and only if there exists a
J ⊆ I such that

i) I\J is finite,

ii) i ∈ J ⇐⇒ (Fi)0 = 1,

iii) the family of ((Fi)+)i∈J is summable.

c) Show that if (Fi)i∈I is multiplicable and if J = {i ∈ I | (Fi)0 = 1}, then (Fj)j∈J is
multiplicable and one has the combinatorial equalities

i)
∏
i∈I

Fi =

 ∏
i∈I\J

Fi

 ·
∏
j∈J

Fj

,

ii)
∏
j∈J

Fj = 1 +
∑
j∈J

(Fj)+ +
∑

{j1,j2}∈℘[2](J)

(Fj1)
+

(Fj2)
+

+ . . ..

Exercise 2.10. Denote by S<k> the species of permutations having all cycles of length k. Show
that the infinite family (S<k>)k≥1 is multiplicable and that the species S of permutations satisfies

S =
∏
k≥1

S<k>.
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Exercise 2.11. Determine whether the species Bal of ballots is isomorphic to the species∏
n≥1

(
1 + En + E2

n + E3
n + . . .

)
.

Exercise 2.12. Prove formulas (2.10) for the series Bal(x), B̃al(x) and ZBal(x1, x2, . . .).

Hint: First establish formulas (2.9).

Exercise 2.13. For the species L of linear orderings, prove the combinatorial equalities

L = 1 +X L =
∑
k≥0

Xk =
∏
i≥0

(
1 +X2i

)
.

Exercises of Section 2.2

Exercise 2.14. Let F , G, H and K be species of structures, with G[∅] = ∅ = H[∅].

a) Verify that the partitional composition F ◦G, defined by formulas (2.11) and (2.12), is a
species of structures.

b) Show, by an explicit description of the isomorphisms, that the partitional composition has
the following properties

i) (F ◦G)◦H = F ◦(G◦H), (associativity)

ii) F ◦X = X◦F = F , (neutral element)

iii) (F +K)◦G = F ◦G+K◦G, (distributivity)

iv) (F ·K)◦G = (F ◦G)·(K◦G), (distributivity)

v) F0 = F ◦0 and F [∅] = ∅ if and only if F (0) = 0.

c) Show, by enumerating the F ◦G-structures, that one indeed has (F ◦G)(x) = F (G(x)).

Exercise 2.15. a) Let k be a fixed integer. Verify that the species S [k] of permutations having k
cycles and the species Par[k] of partitions having k blocks satisfy the combinatorial equations

S [k] = Ek◦C, Par[k] = Ek◦E+,

where Ek is the species of sets of cardinality k and C is that of oriented cycles (cyclic permu-
tations).

b) Let c(n, k) be the number of permutations of a set of cardinality n having k cycles and
S(n, k) be the number of partitions of a set of cardinality n having k blocks. The numbers
s(n, k) := (−1)n−kc(n, k) and S(n, k) are called, respectively, Stirling numbers of the first
and second kind. Deduce from a) the following identities:
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i)
∑
n≥k

c(n, k)
xn

n!
=

(log 1/(1− x))k

k!
,

ii)
∑
n≥k

S(n, k)
xn

n!
=

(ex − 1)k

k!
.

c) Show that for n ≥ 0, k ≥ 1,

i) S(n+ 1, k) = S(n, k − 1) + k S(n, k),

ii) c(n+ 1, k) = c(n, k − 1) + n c(n, k).

d) Show that for n ≥ 0,

i)

n∑
k=0

s(n, k)xk = x<n> := x (x− 1) · · · (x− n+ 1), ),

ii)

n∑
k=0

S(n, k)x<k> = xn.

Exercise 2.16. Show that the generating series of unlabeled permutations is not the composite of
the type generating series of the species of sets with that of cycles (i.e., S̃(x) 6= Ẽ(C̃(x)).

Exercise 2.17. Show that formula (2.13) b), namely

(̃F ◦G)(x) = ZF (G̃(x), G̃(x2), G̃(x3), . . .),

is a consequence of formula (2.13) c).

Exercise 2.18. a) Verify the formulas in example 2.17 relating the series End(x), Ẽnd(x), ZEnd

to the series A(x), Ã(x) and ZA.

b) Show that the formulas (2.15) implicitly determine the series A(x), Ã(x) and ZA.

Exercise 2.19. a) Starting from combinatorial equation (2.16), reprove the explicit formulas

(2.10) for the series Bal(x), B̃al(x) and ZBal.

b) Starting from combinatorial equation (2.17), establish formulas (2.18).

c) Establish identity (2.19) a), namely∏
k≥1

1

1− xk
= exp

∑
n≥1

1

n

xn

1− xn
,

starting from the combinatorial equation S = E(C).
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Exercise 2.20. For two formal power series a = a(x1, x2, x3, . . .) and b = b(x1, x2, x3, . . .) show
that with notational convention (2.14),

b =
∑
k≥1

1

k
ak ⇐⇒ a =

∑
k≥1

µ(k)

k
bk.

Hint: Use the following classic property of the Möbius function µ:

∑
d|n

µ(d) =

{
1, if n = 1,

0, otherwise.

Exercise 2.21. a) Taking the logarithm of the equality (2.19), b) and using Exercise 2.20, prove
the explicit formula (2.20), namely

ZC(x1, x2, x3, . . .) =
∑
k≥1

φ(k)

k
log

1

1− xk
.

Hint: Use the following formula for the Euler φ-function: φ(n) =
∑

d|n dµ(n/d).

b) Deduce from a) the remarkable relation

x

1− x
=
∑
k≥1

φ(k)

k
log

1

1− xk
.

Exercise 2.22. Show that if two species of structures F and F c are related by the combinatorial
equation F = E(F c), i.e., F c is the species of connected F -structures, then

a) F c(x) = logF (x),

b) F̃ c(x) =
∑

k≥1
µ(k)
k log F̃ (xk),

c) ZF c(x1, x2, . . .) =
∑

k≥1
µ(k)
k logZF (xk, x2k, . . .).

Exercise 2.23. Consider the species Oct of octopuses, introduced in Exercise 1.7.

a) Show that Oct = C(L+).

b) Show, by calculus, that Oct(x) = C(2x)− C(x).

c) This formula suggests the combinatorial equation Oct(X)+C(X) = C(2X). Prove the validity
of this equation.

d) Deduce the formulas

i) Oct(x) =
∑

n≥1 (2n − 1)xn,
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ii) ZOct(x1, x2, x3, . . .) =
∑

n≥1
φ(n)
n log

(
1−xn
1−2xn

)
.

Exercise 2.24. a) Show that the number of octopuses on n vertices (n ≥ 1), where each tentacle
is of odd length, is given by (n− 1)! (Ln + (−1)n+1 − 1), where

Ln =

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
designates the nth Lucas number. Note: the Lucas numbers satisfy the recurrence

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2, for n ≥ 2.

b) Compute the cycle index series of the species of octopuses with odd tentacles.

Exercise 2.25. a) Let F and G be two species of structures, with G(0) = 0. Show that the
family (F (Gn))n≥1 is summable, where Gn is the species G restricted to the cardinality n.
Also give a description of the

∑
n≥1 F (Gn)-structures.

b) The combinatorial equation Octreg(X) =
∑

n≥1C(Xn) defines the species Octreg of regular
octopuses. Justify this terminology by giving a graphical example of a Octreg-structure and
establish the following formulas for the series associated to the species Octreg:

i) Octreg(x) =
∑

n≥1

(∑
d|n d

)
xn

n ,

ii) Õctreg(x) =
∑

n≥1 τ(n)xn, where τ(n) = number of divisors of n,

iii) ZOctreg(x1, x2, . . .) = −
∑

k,n≥1
φ(k)
k log (1− xnk).

c) Show that the species Cha of chains, introduced in Exercise 1.15, can be written in the form

Cha = (1 +X)

1 +
∑
n≥1

E2(Xn)

 ,

where E2 designates the species of sets of cardinality two. Deduce the expressions for the
various series associated to the species Cha.

Exercise 2.26. Let F and G be two species of structures, with F (0) = 1. Show that the family
(F (Gn))n≥1 is multiplicable. Also give a description of the

∏
n≥1 F (Gn)-structures.

Exercise 2.27. Let G = L+ be the species of non-empty linear orderings. Show that the iterations
G〈n〉 of G are given by the combinatorial equations G〈n〉 = X L(nX), n = 0, 1, 2, . . ..

Exercise 2.28. A partially ordered set is called reduced if it satisfies the following condition: for
all x and y,

{z|z ≤ x} ∪ {y} = {z|z ≤ y}
{z|z ≥ x} = {z|z ≥ y} ∪ {x}

}
⇒ x = y.

Denote by Red the species of reduced partial orderings.
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a) Establish the combinatorial equation Ord = Red(L+).

b) Deduce the following relations:

i) Red(x) = Ord
(

x
1+x

)
,

ii) R̃ed(x) = ZOrd

(
x

1+x ,
x2

1+x2
, . . .

)
,

iii) ZRed(x1, x2, x3, . . .) = ZOrd

(
x1

1+x1
, x2

1+x2
, . . .

)
.

Exercise 2.29. It is always possible to choose canonically a supplementary element ∗U outside of
each finite set U by taking ∗U = U (i.e., the supplementary “element” is the set U itself!). In this
case, we say that U+ is the set successor of U and write U+ = U ∪{U}. We have as well ∗U /∈ U ,
since according to classical set theory, one always has U /∈ U (Foundation Axiom). Show that with
this choice for ∗U , the operation of differentiation is well-defined and that indeed F ′(x) = d

dxF (x).

Exercise 2.30. a) Verify the equalities of Proposition 2.25 in the cases: F = C, E and L.

b) Prove formula c) of Proposition 2.25.

Exercise 2.31. Recall that the species Bal of ballots and the species Oct of octopuses are char-
acterized by the combinatorial equations Bal = L(E+) and Oct = C(L+). Show, by graphical
arguments, that the derivatives of these species satisfy

a) Bal′ = Bal2 · E,

b) Oct′ = L(X) · L(2X).

Exercise 2.32. Establish rigorously, by giving the explicit isomorphisms, the following rules of
combinatorial differential calculus.

a) (F +G)′ = F ′ +G′, (additivity)

b) (F ·G)′ = F ′ ·G+ F ·G′, (product rule)

c) (F ◦G)′ = (F ′◦G) ·G′. (chain rule)

Exercise 2.33. In a purely formal fashion (i.e., by using rules of combinatorial differential calculus,
associativity, etc.), establish formulas a) and b) of problem 18 starting from the combinatorial
equations Bal = L(E+) and Oct = C(L+).

Exercise 2.34. Let A = X E(A), be the species of rooted trees, F = E(A), that of rooted forests
and a, that of trees. Establish, by combinatorial calculus as well as by a graphical argument, the
following combinatorial equations:

a) A′ = F · L(A),
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b) a′′ = F ·A′,

c) A′′ = (A′)2 + (A′)2L(A).

Exercise 2.35. Calculate the successive derivatives of

a) the species ℘ = E2 of subsets of a set,

b) the species L of linear orderings.

Exercise 2.36. Let D = d
dx be the differentiation operator with respect to the variable x. In the

classic theory of ordinary differential equations, the following identity is very useful: (D− c)f(x) =
ec xDe−c xf(x), where c is any constant and f(x) any differentiable function or a formal power
series. One also has the more general identity

(D + h′(x))f(x) = e−h(x)Deh(x)f(x),

which can be rewritten in the form

eh(x)(f ′(x) + h′(x)f(x)) = (eh(x)f(x))′.

Establish, by a geometric argument, the following corresponding combinatorial identity, namely
E(H) · (F ′ +H ′ · F ) = (E(H) · F )′, where F and H are species of structures.

Exercise 2.37. (see [183]) Verify that for any m ≥ 1, the combinatorial differential equation

Y ′ = 3(m− 1)X2, Y [∅] = ∅,

possesses the m non-isomorphic solutions

Y = 3k C3 + (m− 1− k)X3, k = 0, 1, . . . ,m− 1,

where C3 denotes the species of oriented cycles on 3 elements sets.

Exercises for Section 2.3

Exercise 2.38. Show that the pointing operation satisfies the following rules:

a) (F +G)
•

= F
•

+G
•

(additivity),

b) F ·G)
•

= F
• ·G+ F ·G• (product rule),

c) (F ◦G)
•

= (F ′◦G) ·G• (chain rule for pointing).

Exercise 2.39. a) Show, by cutting off the head of non-degenerate vertebrates (see Example 3),
that V = A+ V·A.
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b) Deduce, for n ≥ 1, the identity

nn =
n−1∑
k=0

(
n

k

)
kk (n− k)n−k−1.

Exercise 2.40. For the species Bal, of ballots (see Example 2.12), and Oct, of octopuses (see
Exercises 1.7 and 2.23), establish the isomorphisms

a) Bal
•

= Bal2 · E•,

b) Oct
•

+ L(2X) = L(X) · L(2X).

Exercise 2.41. The pointing operation of order n is defined by

F •n = (XD)nF, where D = d/dX.

a) Show that F •n =
∑n

k=0 S(n, k)XkF (k), where the S(n, k) are the Stirling numbers of the
second kind (see Exercise 2.15).

Hint: Use mathematical induction to show that

(XD)n =
n∑
k=0

S(n, k)XkDk.

b) Express XnDn with the help of the (XD)k, 0 ≤ k ≤ n and the Stirling numbers of the first
kind s(n, k).

Exercise 2.42. Establish formulas (2.23), (2.24), and (2.25) giving the expected number of con-
nected components of a random F -structure on n vertices in the cases F = Par, S and G.

Exercise 2.43. a) Let F = G(H) and let n be an integer ≥ 0. Consider the random variable
θn = the number of members of a G-assembly of random H-structures (i.e., of an F -structure)
on [n]. Show that the expectation and the variance of θn are respectively given by

i) E(θn) =
|G•(H)[n]|
|F [n]|

,

ii) Var(θn) =
|G••(H)[n]|
|F [n]|

−
(
|G•(H)[n]|
|F [n]|

)2

.

b) What happens to the preceding formulas in the case of cyclic assemblies (i.e., G = C, the
species of oriented cycles)?

Exercise 2.44. a) Show that the Cartesian product of species of structures possesses the fol-
lowing properties: for all species F,G and H,

i) (F ×G)×H = F × (G×H), (associativity)
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ii) F ×G = G× F , (commutativity)

iii) E × F = F × E = F , (neutral element)

iv) F × (G+H) = F ×G+ F ×H, (distributivity)

v) (F ×G)
•

= F
• ×G = F ×G•,

b) Compare the following species

i) (F ×G)′, F ′ ×G, and F ×G′,
ii) F × (G ·H) and (F ×G) · (F ×H),

iii) (F ×G) ·H and (F ·H)× (G ·H),

iv) (F ×G)◦H and (F ◦H)× (G◦H).

c) Show that the passage to the generating series and the cycle index series is compatible with
the Cartesian product (see Proposition 2.38).

Exercise 2.45. Describe an isomorphism between the species L× L and S × L. Deduce that the
law of simplification is not valid for the Cartesian product.

Exercise 2.46. Show the combinatorial equalities

a) C3 × C3 = 2 C3,

b) X3 × C3 = 2X3,

c) (X · E2)× (X · E2) = X · E2 +X3,

d) C × ℘ = Oct + C.

Exercise 2.47. a) For each k ≥ 0, consider the species ℘[k] of subsets of cardinality k:

℘[k][U ] = {V |V ⊆ U, |V | = k}.

Establish the combinatorial equality

℘[m] × ℘[n] =

min(m,n)∑
k=0

Em−k · Ek · En−k · E

=

min(m,n)∑
k=0

Em−k · En−k · ℘[k].

b) A lottery proceeds in the following manner: the “player” (resp., the “house”) chooses a set V
(resp., W ) of k integers among the integers 1 to N . The player gains the pot i if |V ∩W | = i.
In the case where N = 49, k = 6, calculate the probability that the player wins the pot i, for
i = 2, 3, 4, 5, 6.
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Exercises for Section 2.4

Exercise 2.48. Establish directly formula (2.31) giving the number (℘[2][σ])k for a given permu-
tation σ of cycle type (σ1, σ2, σ3, . . . ), by considering separately the cycles of length k of ℘[2][σ]
originating from either two different cycles of σ, or from the same cycle of σ.

Exercise 2.49. (See [74].) Show that for any permutation σ of cycle type (σ1, σ2, . . . ) and for all
k ≥ 1 and m ≥ 1,

a)
∑
d|k

µ(k/d)(σd)m1 =
∑

[j1,...,jm]=k

j1 . . . jm σj1 . . . σjm ,

b) (σk)m =
∑

d|k,(m,k/d)=1

d σdm,

c)
1

k

∑
d|k

µ(k/d)(σd)m =
∑

d|(m,k)

µ(d)

d
σmk/d.

Exercise 2.50. Show that

a) for any permutation β and any ω ≥ 1, with βω = Id,∑
k≥1

βk =
1

ω

∑
d|ω

φ(ω/d)fixβd,

b) for any species of structures G and any permutation σ of order ω,

fix (℘�G)[σ] = 2(1/ω)
∑
d|ω φ(ω/d) fixG[σd],

where φ denotes Euler’s φ-function.

Exercise 2.51. Denote by Gl, the species of (undirected) graphs with at most one loop at each
vertex and by Dw, the species of directed graphs without loops.

a) Verify the following relations:

i) Gl = ℘× G, ii) D = ℘×Dw.

b) Determine fixGl[σ] and fixDw[σ].

Exercise 2.52. Write a program permitting the calculation of the first terms of the cycle index
series and the type generating series of the following species:

a) G, b) Gl, c) D, d) Dw.
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Exercise 2.53. Starting from the definitions, show that

a) the operation � is associative,

b) the species E
•

of pointed sets is the neutral element for the operation � ,

c) the operation � is distributive on the right by the operation of Cartesian product ×: (F ×
G) �H = (F �H)× (G�H),

d) the operation � is not distributive on the left by × (give an example illustrating this fact),

e) the Cartesian product squared F ×F can be expressed with the help of the ordinary product
and functorial composition: F × F = ((X +X2) · E) �F .

Exercise 2.54. Calculate the following series (C �Cp)(x), ˜(C �Cp)(x) and ZC� Cp , where Cp denotes
the species of oriented cycles restricted to the cardinality p, a prime number.

Exercise 2.55. Let F and G be any species of structures.

a) Compare the species (F · E) �G and F � (E ·G).

b) If G(0) 6= 0, show that F ◦G is a subspecies of (F · E) � (G · E).

c) What happens in b) in the case of the species of graphs (see formula (2.27))?

Exercise 2.56. Let U be a finite set. A covering of U is a set of non-empty subsets of U whose
union is U . Consider the species Cov (resp., Cov[m]) of coverings of sets (resp., coverings of sets by
exactly m non-empty subsets).

a) Show that E · Cov = ℘�℘+, and that E · Cov[m] = ℘[m] �℘+, where ℘+ is the species of
non-empty subsets.

b) If | U |= n, show that

i) | Cov[U ] |=
n∑
i=0

(−1)i
(
n

i

)
22n−i−1,

ii) | Cov[m][U ] |=
n∑
i=0

(−1)i
(
n

i

)(
2n−i − 1

m

)
.

Exercise 2.57. By definition, a simplicial complex on a finite set U is a collection C of subsets
of U , called simplices, such that u ∈ U implies that {u} ∈ C, and ∅ 6= T ⊆ S ∈ C implies T ∈ C.
The dimension of a complex C is the maximum dimension of its simplices, the dimension of a
simplex S ∈ C being |S| − 1. Let m ≥ 0; a complex C is called a pure m-complex if all of its
maximal simplices are of dimension m. Show that the species C [m] of pure m-complexes satisfies
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a) C [m] = ℘�℘[m+1],

b) fixC [m][σ] = 2Pm(σ1,σ2,... ), where Pm ∈ Z[σ1, σ2, . . . ] is a polynomial of total degree m+ 1 in
the variables σ1, σ2, . . . .

Exercise 2.58. (see [74]) Let F be any species and m, an integer ≥ 0. Define the species F<m>

of F -structured words of length m by setting, for any finite set V ,

F<m>[V ] = (F [m]× Φ[m,V ])/Sm,

where Φ[m,V ] = {ϕ | ϕ : [m]→ V },Sm denotes the symmetric group of order m and the quotient
set above is interpreted as the set of orbits of the action

Sm × (F [m]× Φ[m,V ])→ (F [m]× Φ[m,V ]),

defined by β · (s, ϕ) = (F [β](s), ϕ◦β−1). The elements of F<m>[V ] are called the F -structured
words of length m on the alphabet V or also the types of V -colored F -structures of order m. In
particular, taking F = L,E, C, L<m> is the species of words of length m, E<m> is the species of
abelian words of length m, and C<m> is the species of circular words of length m.

a) Prove that for any permutation σ : V → V ,

fixF<m>[σ] = ZFm(fixσ, fixσ2,fixσ3 . . . ).

b) Deduce expressions for the series F<m>(x) and F̃<m>(x).

Exercise 2.59. Every m-ary relation on U can be considered as a set of words of length m
on the alphabet U , whence the combinatorial equation Rel[m] = ℘�L<m>, where L<m> is the

species of words of length m. More generally, given a species F , define the species Rel
[m]
F of m-ary

F -structured relations by Rel
[m]
F = ℘�F<m>, where F<m> is defined in the preceding exercise.

Prove that for any permutation σ : U → U :

a) fix Rel[m][σ] = 2
∑
i1,...,im≥1 i1...imσi1 ...σim/[i1,...,im]

,

b) fix Rel
[m]
F [σ] = 2

1
ω

∑
d|ω φ(ω/d)ZFm (fd,f2d,... ), where fk = fixσk =

∑
d|k dσd, ω is the order of σ,

and φ denotes Euler’s φ-function.
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Chapter 3

Variations on the theme of Species

3.1 Weighted species

In enumerative combinatorics, it is often required to consider some parameters related to the
characteristics of the structures. For instance, in computer science, the complexity analysis of
algorithms often involves the enumeration of structures according to certain descriptive parameters
such as the number of leaves or the depth of binary rooted trees. It is this kind of enumeration
problem that we are now going to address through the introduction of a variant of the concept of
species of structures: weighted species. All constructions introduced in the preceding chapters
and sections will be extended by taking into account this addition of weighting.

Example 3.1. Assign to each rooted tree α ∈ A[U ] a weight w(α) by setting

w(α) = tf(α), (3.1)

where t is a formal variable and f(α) denotes the number of leaves of α (see Figure 3.1). This
permits the regrouping of rooted trees according to the descriptive parameter “number of leaves”.
We say that the set A[U ] of all rooted trees on U is “weighted” by (3.1) and also that the variable t
acts as a leaf “counter”. The “inventory” of rooted trees on U according to this weight w, denoted
by |A[U ]|w, is defined as the sum of the weights w(α), α ∈ A[U ]:

|A[U ]|w =
∑

α∈A[U ]

w(α) =
∑

α∈A[U ]

tf(α).

Regrouping terms according to the powers of t gives a polynomial in t. If |U | = n, we have

|A[U ]|w = an(t) =

n∑
k=0

an,kt
k.

The coefficient an,k gives the number of rooted trees on n elements of which k are leaves. This
inventory is more refined than the simple enumeration of rooted trees; the substitution t := 1 has
the effect of giving weight 1 to each rooted tree and we obtain an(1) = |A[U ]| = nn−1, for n ≥ 1.

75
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t
t
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tt t

t
t

t
t
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Figure 3.1: A rooted tree α with w(α) = t12.

One can equally be interested in the enumeration of unlabeled rooted trees, and also of rooted
trees left fixed by a given permutation, according to the same parameter “number of leaves”. It is
for this purpose that the concept of species of weighted structures is introduced.

Note that the weight (3.1) is a function w : A[U ] −→ R, where R is a polynomial ring in the
variable t. The pair (A[U ], w) is said to be a weighted set in the ring R (R-weighted, for short).
Let us first study the general concept of R-weighted sets as well as related constructions.

Let K ⊆ C be an integral domain (for example Z, R or C) and R, a ring of formal power series
in an arbitrary number of variables, with coefficients in K.

Definition 3.2. An R-weighted set is a pair (A,w), where A is a (finite or infinite) set and
w : A −→ R is a function which associates a weight w(α) ∈ R to each element α ∈ A. If the
following sum, denoted by |A|w, exists, the weighted set (A,w) is said to be summable (for a precise
definition, see Exercise 3.1) and |A|w is called the inventory (or total weight or cardinality) of
the weighted set (A,w): |A|w =

∑
α∈Aw(α).

Many set-theoretic constructions can be extended to R-weighted sets.

Definition 3.3. Let (A,w) and (B, v) be R-weighted sets. A morphism of R-weighted sets
f : (A,w) −→ (B, v), is a function f : A −→ B compatible with the weighting (one also says that
the function f is weight preserving), that is to say, such that w = v ◦ f . Moreover, if f is a
bijection, f is called an isomorphism of weighted sets and we write (A,w) ' (B, v). Observe
that

(A,w) ' (B, v) =⇒ |A|w = |B|v .
Definition 3.4. Let (A,w) and (B, v) be R-weighted sets. Define

i) The sum (A,w) + (B, v) as the R-weighted set (A+B,µ), where A+B denotes the disjoint
union of the sets A and B and µ is the weight function defined by

µ(x) =

{
w(x), if x ∈ A,
v(x), if x ∈ B.
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ii) The product (A,w) × (B, v) as the R-weighted set (A × B, ρ), where A × B denotes the
cartesian product of sets A and B and ρ is the weight function defined by ρ(x, y) = w(x)v(y).

The proof of the following proposition is left as an exercise.

Proposition 3.5. Let (A,w) and (B, v) be R-weighted sets. With the preceding notation and
conventions, we have

a) |A+B|µ = |A|w + |B|v,
b) |A×B|ρ = |A|w|B|v.

(3.2)

To every finite set A, one can associate an R-weighted set (A,w) by giving each element α ∈ A
the weight w(α) = 1 ∈ R. This weighting is called trivial. Then |A|w = |A|. With this notion at
hand, we can now introduce the notion of weighted species. It constitutes an important variant of
the concept of species of structures, which allows a more refined enumeration of structures and their
classification according to various descriptive parameters, by the addition of well-chosen weights.

Definition 3.6. Let R be a ring of formal power series or of polynomials over a ring K ⊆ C. An
R-weighted species is a rule F which produces

i) for each finite set U , a finite or summable R-weighted set (F [U ], wU ),

ii) for each bijection σ : U −→ V , a function F [σ] : (F [U ], wU ) −→ (F [V ], wV ) preserving the
weights (i.e., a weighted set morphism).

Moreover, the functions F [σ] must satisfy the following functoriality properties:

a) if σ : U −→ V and τ : V −→W are bijections, then F [τ ◦ σ] = F [τ ] ◦ F [σ],

b) for each set U , if IdU denotes the identity bijection of U to U , then F [IdU ] = IdF [U ].

As before, an element s ∈ F [U ] is called an F -structure on U , and the function F [σ], the transport
of F -structures along σ.

It follows from the definition that the transport of structures F [σ] along a bijection σ : U −→ V
is a weight preserving bijection and that |F [U ]|wU = |F [V ]|wV . Two F -structures s1 and s2 are
called isomorphic (i.e., have same type) if they are transportable one on the other along a bijection
σ. As F [σ] preserves weights, s1 and s2 are then forced to have the same weight. This permits the
weighting of the set F [U ]/∼, of isomorphism types of F -structures (i.e., unlabeled F -structures),
by defining the weight of a type as the weight of an arbitrary structure representing this type. To
be more precise, it is useful to write F = Fw to denote the weighted species F together with the
family of all the weight functions wU : F [U ] −→ R associated to F .
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Example 3.7. ) Consider the species Sw of permutations with cycle counter α, i.e., the weight
w(σ) of a permutation σ is w(σ) = αcyc(σ), where α is a formal variable and cyc(σ) is the number
of cycles of σ. This weighting has values in the ring of polynomials Z[α], so Sw is a Z[α]-weighted
species.

Observe that every species of structures F can be identified with an R-weighted species by con-
sidering that the sets F [U ] are all provided with the trivial weighting. Moreover, this identification
is compatible with all the operations and the passage to the diverse generating series introduced
below.

Definition 3.8. Let F = Fw be an R-weighted species of structures. The generating series of F
is the exponential formal power series Fw(x) with coefficients in R defined by

Fw(x) =
∑
n≥0

|F [n]|w
xn

n!
,

where |F [n]|w is the inventory of the set of F -structures on [n]. Its cycle index series is defined by

ZFw(x1, x2, x3, . . .) =
∑
n≥0

1

n!

(∑
σ∈Sn

|FixF [σ]|w xσ11 xσ22 xσ33 . . .

)
,

where as before, σi is the number of cycles of length i in σ. Note that the set FixF [σ] inherits
the weighting on F [U ] of which it is a subset, whence |FixF [σ]|w is the inventory of all the F -
structures on [n] left fixed under the transport F [σ]. Since the weighting is preserved by transport
of structures, we can define the type generating series of Fw:

F̃w(x) =
∑
n≥0

∣∣∣F [n]/∼
∣∣∣
w
xn,

where ∼ is the isomorphism relation. Hence, |F [n]/∼|w is the inventory of unlabeled F -structures
on n points.

As in the non-weighted case, by suitably regrouping terms, the cycle index series can be written
as

ZFw(x1, x2, . . .) =
∑

n1+2n2+...<∞

∣∣FixF [n1, n2, . . .]
∣∣
w

xn1
1 xn2

2 . . .

1n1n1!2n2n2! . . .
,

where |FixF [n1, n2, . . .]|w denotes the inventory of the set F -structures left fixed under the action
of a permutation σ of type (n1, n2, n3, . . .). Moreover, the formulas

a) Fw(x) = ZFw(x, 0, 0, . . .) and b) F̃w(x) = ZFw(x, x2, x3, . . .)

remain valid.
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Species Structure Weight

Fw +Gv s w(s) if s ∈ F [U ]
v(s) if s ∈ G[U ]

Fw·Gv s = (f, g) w(f)v(g)

Fw◦Gv s = (π, f, (γp)p∈π) w(f)
∏
p∈π v(γp)

F ′w s w(s)

Fw
•

s = (f, u) w(f)

Fw ×Gv s = (f, g) w(f)v(g)

Fw �G s w(s)

(G non-weighted)

Table 3.1: Weights for usual operations

The operations +, · , ◦, ′ , •, × and � are defined in the same fashion on weighted species as in
the non-weighted case, but the weights of the structures have to be carefully defined. See Table 3.1
for the precise definitions. Observe that for the product, the substitution, and the Cartesian
product, a principle of multiplicativity, induced from (3.2), is used to define the weights. The goal,
of course, is to reflect correctly the corresponding operations on the generating series. However,
the plethystic substitution of the cycle index series must undergo an important modification in the
weighted case.

Definition 3.9. Let Fw and Gv be two weighted species of structures, such that G(0) = 0 (i.e.,
there is no G-structure on the empty set). The plethystic substitution of ZGv in ZFw , denoted
by ZFw ◦ZGv (or ZFw(ZGv)) is defined by

ZFw ◦ZGv = ZFw((ZGv)1 , (ZGv)2 , (ZGv)3 , . . .) , (3.3)

where, for k = 1, 2, 3, . . ., (ZGv)k (x1, x2, x3, . . .) = ZG
vk

(xk, x2k, x3k, . . .).

The reader should take note that in the series ZG
vk

(xk, x2k, x3k, . . .), the weighting v is raised
to the power k (in the ring R) and the indices of the variables xi are multiplied by k.

Remark 3.10. It often happens that the weights of the structures of a species Gv are monomials
in the variables α, β, γ, . . . . In this case, setting g(α, β, γ, . . . ;x1, x2, x3, . . .) = ZGv(x1, x2, x3, . . .),

gk = (ZGv)k = g(αk, βk, γk, . . . ;xk, x2k, x3k, . . .).
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Proposition 3.11. Let Fw and Gv be two R-weighted species of structures. Then

a) (Fw +Gv)(x) = Fw(x) +Gv(x), a′) Z(Fw+Gv) = ZFw + ZGv ;

b) (FwGv)(x) = Fw(x)Gv(x), b′) Z(Fw·Gv) = ZFwZGv ;

c) F ′w(x) =
d

dx
Fw(x), c′) ZF ′w =

∂

∂x1
ZFw ;

d) (Fw ×Gv)(x) = Fw(x)×Gv(x), d′) Z(Fw×Gv) = ZFw × ZGv ;

e) (Fw◦Gv) (x) = Fw(Gv(x)), e′) ZFw◦Gv = ZFw ◦ZGv ;

f) (Fw �G)(x) = Fw(x) �G(x), f ′) Z(Fw �G) = ZFw �ZG.

(3.4)

It is necessary to assume, for e) and e’), that Gv(0) = 0; and, for f), that G is an ordinary
(non-weighted) species.

These equalities constitute powerful tools for calculation. Their proof is left as an exercise to
the reader, except for formula (3.4), e′) which is proved in Chapter 4 of [22].

Let α be a fixed element of the ring R. To each species F , we can associate the R-weighted
species Fα by giving each structure of F [U ] the same weight α. Clearly then Fα(x) = αF (x), and
ZFα = αZF .

Example 3.12. In this manner, starting from C, the species of oriented cycles, we can construct
the species Cα with weight α for each cycle. The species Sw, of Example 3.7, is then isomorphic to
the species E(Cα), by the principle of multiplicativity. We deduce then that

a) Sw(x) = exp(−α log(1− x)) =

(
1

1− x

)α
,

b) S̃w(x) =
∏
k≥1

1

1− αxk
=
∏
k≥1

(
1

1− xk

)νk(α)

,

c) ZSw(x1, x2, x3, . . .) =
∏
k≥1

(
1

1− xk

)νk(α)

,

(3.5)

where νn(α) = 1
n

∑
d|n φ(d)αn/d and φ denotes Euler’s φ-function.

Example 3.13. In a similar fashion, considering the species E+t of non-empty sets of weight t, we
can form the species Parw = E(E+t) of partitions weighted by number of parts: w(π) = t|π|, where
|π| is the number of blocks of a partition π. The following series are then obtained

a) Parw(x) = exp t(ex − 1),

b) P̃arw(x) =
∏
k≥1

1

1− txk
=
∏
k≥1

(
1

1− xk

)νk(t)

,

c) ZParw(x1, x2, x3, . . .) = exp
∑
k≥1

1

k
tk
(

exp(xk +
1

2
x2k +

1

3
x3k + . . .)− 1

)
.

(3.6)
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Example 3.14. Consider now the species As of rooted trees each having weight s. By substitution
in Sw, we obtain the species Endv = Sw◦As of endofunctions ψ, weighted by v(ψ) = srec(ψ)αcyc(ψ),
where rec(ψ) denotes the number of recurrent elements of ψ, and cyc(ψ) denotes the number of

connected components of ψ. Since As(x) = sA(x), Ãs(x) = sÃ(x), and ZAs = sZA, we obtain,
after some calculation, the following series

a) Endv(x) =

(
1

1− sA(x)

)α
,

b) Ẽndv(x) =
∏
k≥1

(
1

1− skÃ(xk)

)νk(α)

,

c) ZEndv(x1, x2, x3, . . .) =
∏
k≥1

(
1

1− skZA(xk, x2k, x3k, . . .)

)νk(α)

.

(3.7)

Expanding the series Endv(x) according to powers of x, the following expression is obtained for the
total weight of all endofunctions on a set of n ≥ 1 elements (see Exercise 3.5):

|End [n]|v =

n∑
k=1

k

n

(
n

k

)
nn−kskα(α+ 1) . . . (α+ k − 1). (3.8)

In particular, setting s = α = 1, we deduce the identity

nn =
n∑
k=1

knn−k(n− 1)(n− 2) . . . (n− k + 1).

Example 3.15. Symmetric functions. Substituting the species Xt of singletons of weight t into
an ordinary species F , we obtain the weighted species F (Xt). Here, the weight of a structure of
species F (Xt) on a set U is given by t|U |. Since an F (Xt)-structure is simply an F -structure on a set
U together with a weight t on each of its elements, we have the identity F (Xt) = F ×E(Xt). More
generally, let τ be a finite sequence of distinct variables t1, t2, . . . , tk, and define the weighted species
Xτ = Xt1 +Xt2 + . . .+Xtk . Thus an Xτ -structure is a singleton of weight ti, for some i between 1
and k. Now consider the composite species F (Xτ ) = F (Xt1 +Xt2 + . . .+Xtk); an F (Xτ )-structure
corresponds to placing an F -structure on a set of singletons of weights ti, 1 ≤ i ≤ k. Figure 3.2
shows that

F (Xt1 +Xt2 + . . .+Xtk) = F × (E(Xt1)E(Xt2) . . . E(Xtk)) .

Another way of visualizing F (Xτ )-structures consists of assigning a “color” i, 1 ≤ i ≤ k, to
each element of the underlying set of an F -structure and to give to this F -structure the weight
tn1
1 tn2

2 . . . tnkk , where ni is the number of elements of color i in the underlying set. The general
formula of weighted plethysm (3.4), e′), then gives

ZF (Xt1+Xt2+...+Xtk ) = ZF
(
x1(t1 + t2 + . . .), x2(t21 + t22 . . .), . . .

)
since (

ZXt1+Xt2+...+Xtk

)
i

= xi(t
i
1 + ti2 + . . .).
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t1

t2

t1

t2
t3
t3
t1
t3
t2

t1 t3t2

t

t

3

3

=

F F

Figure 3.2: Decomposition respective to type of weight.

This cycle index series allows, in particular, the enumeration of unlabeled F (Xτ )-structures. By
restriction to n-element sets (i.e., by considering the species Fn), the enumeration of unlabeled
F -structures on n points, colored with k colors, is given by the following polynomial in k variables
t1, t2, . . . , tk

[xn] F̃ (Xτ )(x) = ZFn
(
(t1 + . . .+ tk), (t

2
1 + . . .+ t2k), . . . , (t

n
1 + . . .+ tnk)

)
, (3.9)

of total degree n. As is studied in Chapter 4 of [22], this is essentially the classic enumeration
theorem of Pólya. Moreover, the functions pn = tn1 + tn2 + tn3 + . . ., are the traditional power
sum symmetric functions, so that for each n and each species F , we obtain a symmetric function
ZFn(p1, p2, p3, . . .) by enumeration of unlabeled F (Xτ )-structures on a set of cardinality n. In par-
ticular, for the species En of sets of cardinality n, we obtain the complete homogeneous symmetric
functions

hn(t1, t2, t3, . . .) = [xn] Ẽ(Xτ )(x)

=
∑

n1+n2+...nk=n

tn1
1 tn2

2 · · · t
nk
k ,

and the following well known expression for complete homogeneous symmetric functions in terms
of power sums

hn = ZEn(p1, p2, p3 . . .) =
∑
d`n

pd11 pd22 pd33 . . .

aut(d)
,

the sum being taken over all the sequences d = (d1, d2, . . .) of integers ≥ 0 such that n = d1 +2d2 +
3d3 + . . .. Equivalently

∑
n≥0

hn = Ẽ(Xτ )(x)
∣∣
x=1

= ZE(p1, p2, . . .) = exp

∑
k≥1

pk
k

 .

Note that it is possible to take an infinite number of variables t1, t2, . . . in these formulas. In this
case, the species F (Xτ ) is no longer finite, but it is summable, that is to say, for any finite set
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U , F (Xτ )[U ] is a summable weighted set in R = C[[t1, t2, . . .]]. Since the power sum functions
(in infinitely many variables) are algebraically independent in the ring of symmetric functions,
the identities in (3.9) characterize the index series ZF . We point out that according to Frobenius
correspondence, ZFn(p1, p2, p3, . . .) is the symmetric function corresponding to the representation
of the symmetric group obtained by linearizing the group action Sn × F [n] −→ F [n]. In fact, for
any permutation σ ∈ Sn, fixF [σ] is equal to the trace of the permutation matrix of F [σ], that
is, the character of the representation (see [297] for instance for more details). With this point
of view, we can easily deduce certain symmetric function formulas from previous results on cycle
index series, for example (see Exercise 3.7) we get that

ZS(p1, p2, . . .) =
∏
k≥1

1

1− pk

corresponds to the action of the symmetric group on itself by conjugation.

To conclude the present section, we show how weighted species can lead to combinatorial models
for certain classical families of orthogonal polynomials, such as, for example, Hermite polynomials.
See also Exercise 3.8 as well as Exercise 3.9 where Laguerre polynomials are treated.

Example 3.16. Hermite polynomials. Consider the weighted species Invw of all involutions
(i.e., permutations ϕ such that ϕ◦ϕ = Id), weighted by w(ϕ) = tϕ1(−1)ϕ2 , where ϕ1 is the number
of fixed points of ϕ and ϕ2 is the number of cycles of length 2 (the edges in Figure 3.3) in ϕ. We
obtain the combinatorial equation Invw = E(Xt + (C2)−1), where (C2)−1 denotes the species of
cycles of length 2 and weight −1, and it immediately follows that

Invw(x) = exp(tx− 1

2
x2) =

∑
n≥0

Hn(t)
xn

n!
, (3.10)

where the coefficient Hn(t) denotes, by definition, the (unitary) Hermite polynomial of degree n in
t. Thus this classical polynomial appears as the inventory of all involutions on a set of n elements:

Hn(t) =
∑

ϕ∈Inv[n]

tϕ1(−1)ϕ2 . (3.11)

The other series associated with Invw are given by

Ĩnvw(x) =
1

(1− tx)(1 + x2)
, and ZInvw = exp

∑
k≥1

1

k

(
tkxk +

(−1)k

2
(x2
k + x2k)

)
. (3.12)

since ZX = x1 and ZC2 = ZE2 = (x2
1 + x2)/2. Most classical properties of Hermite polynomials

(recurrences, differential equations, Mehler’s formula, coefficients of linearization) can be deduced
from this combinatorial model (see Exercise 3.8).
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Figure 3.3: An involution of weight −t4.

3.2 Extension to the multisort context

3.2.1 Multisort species

The theory of species can naturally be extended in yet another direction by considering structures
constructed on sets containing several sorts of elements. It is an undertaking analogous to the
introduction of functions in many variables.

Example 3.17. Consider tri-chromatic simple graphs, that is to say, simple graphs constructed on
triplets of sets (U1, U2, U3), corresponding to three distinct colors, in such a manner that adjacent
vertices have different colors. Figure 3.4 represents one such graph, where U1 = {a, b, c, d, e},
U2 = {1, 2, 3, 4, 5, 6, 7} and U3 = {m,n, p, q} correspond respectively to the colors yellow, red and
blue. Another example is given by rooted trees constructed on a set having two sorts of elements:

b

7

a

c

m

3

n

2

1

4

6

d

p
q

5

e

Figure 3.4: Sorts as colors.

(green) leaves and (blue) internal vertices. See Figure 3.5. In this example, the elements of leaf
sort are not placed in an arbitrary manner; by convention, they are located at the end of the paths
starting from the root. In other words, these are the vertices with empty “fibers”.

For transport of structures, multisort species are distinguished by the fact that “transport is
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Figure 3.5: Internal nodes and leaves as sorts.

carried out along bijections preserving the sort of the elements”. We illustrate this with rooted
trees. Figure 3.6 represents the transport of a rooted tree on two sorts (internal vertices and leaves).
The bijection σ : U1 +U2 −→ V1 + V2 along which the transport is carried “must necessarily” send
each internal vertex (∈U1) to an internal vertex (∈V1) and each leaf (∈U2) to a leaf (∈V2).
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Figure 3.6: Multisort transport preserves colors/sort.

These preliminary considerations justify the definitions which follow.

Definition 3.18. Let k ≥ 1 be an integer. A multiset (with k sorts of elements) is a k-tuple of
sets U = (U1, . . . , Uk). For brevity we say that U is a k-set. An element u ∈ Ui is called an element
of U of sort i. The multicardinality of U is the k-tuple of cardinalities |U | = (|U1|, . . . , |Uk|). The
total cardinality of U is the sum

‖U‖ = |U1|+ . . .+ |Uk|.

Definition 3.19. A multifunction f from (U1, . . . , Uk) to (V1, . . . , Vk), denoted by

f : (U1, . . . , Uk) −→ (V1, . . . , Vk),
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is a k-tuple of functions f = (f1, . . . , fk) such that fi : Ui −→ Vi, for i = 1, . . . , k. The composition
of two multifunctions is made componentwise. The multifunction f is said to bebijective if each
function fi is bijective.

Definition 3.20. Let k ≥ 1 be an integer. A species of k sorts (or k-sort species) is a rule F
which produces

i) for each finite multiset U = (U1, . . . , Uk), a finite set F [U1, . . . , Uk],

ii) for each bijective multifunction

σ = (σ1, . . . , σk) : (U1, . . . , Uk) −→ (V1, . . . , Vk),

a function
F [σ] = F [σ1, . . . , σk] : F [U1, . . . , Uk] −→ F [V1, . . . , Vk].

Moreover, the functions F [σ] must satisfy the functoriality properties, that is to say, for bijective
multifunctions σ = U −→ V and τ : V −→ W , and for the multifunction identity IdU : U −→ U ,
it is required that

a) F [τ ◦σ] = F [τ ]◦F [σ],

b) F [IdU ] = IdF [U ].

As before, an element s ∈ F [U1, . . . , Uk] is called an F -structure on (U1, . . . , Uk) (or a structure
of species F on (U1, . . . , Uk)). The function F [σ1, . . . , σk] is thetransport of F -structures along
(σ1, . . . , σk). If t = F [σ1, . . . , σk](s), then s and t are said to be isomorphic F -structures. Again,
this is an equivalence relation for which the classes are still unlabelled F -structures.

The usual graphical conventions for the representation of F -structures extend to the multisort
context (see Figure 3.7, for k = 3) by associating to each element of the underlying set a number
(or a shape, or a color, . . . ) identifying its sort. Of course, it is not necessary that there be at least
one element of each sort in an F -structure. Thus, every multisort species can also be viewed as a
multisort species on a larger set of sorts.

Remark 3.21. It is often useful, in practice, to represent the multiset U = (U1, . . . , Uk) underlying
a structure as being the set U1 + . . .+Uk ( disjoint union

⋃k
i=1 Ui×{i}), also denoted by U . There

follows a function χ = χU : U −→ [k], associating to each element its sort, that is to say, the fibers
χ−1
U ({i}) being the Ui, i = 1, . . . , k. In this case, the multifunctions are identified with ordinary

functions f : U −→ V preserving sorts, that is to say, such that χV ◦f = χU .

We leave to the reader the task of formulating in functorial terms the definition of multisort
species and of showing the equivalence of the different points of view presented in the preceding
remark (see Exercise 3.19). To each sort, one can associate a species of singletons.
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Figure 3.7: Typical multisorted F -structure.

Definition 3.22. For each i, 1 ≤ i ≤ k, the (k-sort) species Xi of singletons of sort i is defined
by

Xi[U ] =

{
{U}, if |Ui| = 1, and Uj = ∅, for all j 6= i,

∅, otherwise.

In other words, there is an Xi-structure on (U1, . . . , Uk) only if

U = ∅+ ∅+ . . .+ {u}︸︷︷︸
ith position

+∅+ . . .+ ∅ = {u}

is a singleton of sort i. In this case, {u} is the unique Xi-structure.

Remark 3.23. Other variables can be used to designate the species of singletons. The variables
currently utilized are the letters of the alphabet X, Y , Z, T , with or without indices. Note the
abuse of language which consists in saying, for example, that a Y -structure is a singleton ofsort
Y . One often writes F = F (X1, . . . , Xk) to indicate that F is a k-sort species. This notation is
moreover compatible with the substitution of species defined later in this section.

3.2.2 Weighted multisort species

By combining the notions of multisort species and weighted species, the more general concept of
weighted multisort species is obtained.

Definition 3.24. A weighted multisort species F = Fw (of k sorts) is a rule which associates

i) to each multiset U = (U1, U2, . . . , Uk), a weighted set (F [U ], wU ),

ii) to each bijective multifunction σ = (σ1, σ2, . . . , σk) a function F [σ1, σ2, . . . , σk], which pre-
serves the weights, in such a way that the functoriality conditions of Definition 3.20 are
satisfied.
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The reader will easily define for himself, following analogous previous contexts, the correspond-
ing notions of isomorphic structures, isomorphism types, equipotent species, and isomorphic species
(combinatorial equality). The operations of addition, multiplication, substitution, differentiation,
cartesian product, pointing and functorial composition are also defined essentially in the same
manner as in the weighted unisort case, in analogy with functions in many variables. This is made
easier by the introduction of some terminology for a k-set U = (U1, . . . , Uk).

– A k-set dissection of U is a pair k-sets (V,W ) such that for i = 1, . . . , k, Ui = Vi ∪Wi and
Vi ∩Wi = ∅. We denote by ∆[U ], the set of dissections of U .

– A k-set partition π of U is a partition of the total set U1 + . . . + Uk. Each class C ∈ π
can be viewed as a multiset of k sorts, where Ci = C ∩ Ui. We denote by Par[U ], the set of
partitions of U .

Definition 3.25. For two weighted k-sort species F and G and a k-set U = (U1, U2, . . . , Uk), we
naturally set (F +G)[U ] = F [U ] +G[U ], and

(F ·G)[U ] =
∑

(V,W )∈∆[U ]

F [V ]×G[W ],

The sums and products in the statements above being taken in the sense of weighted sets. Keeping
going with our extension of operations to the weighted multisort context, let F = F (Y1, . . . , Ym) be
a weighted m-sort species, and (Gj)j=1,...,m be a family of weighted k-sort species. Thepartitional
composition F (G1, . . . , Gm) (substitution of the Gj , j = 1..m in F ) is a k-sort species defined by
setting, for U = (U1, . . . , Uk),

F (G1, . . . , Gm)[U ] =
∑

π∈Par[U ]
χ:π→[m]

F [χ−1]×
∏
j∈[m]

C∈χ−1
(j)

Gj [C],

where, for each function χ : π −→ [m], χ−1 denotes the m-set (χ−1(i), . . . , χ−1(m)) associated to
χ. In descriptive terms, an F (G1, . . . , Gm)-structure is an F -structure in which each element of
sort Yj has been inflated into a cell which is a structure of species Gj . By definition, the weight
of such a structure s is the product of the weights of the F -structure and the Gj-structures which
form s.

Example 3.26. Let Fr,s,t(X,Y ) = Calt(Aw(X),Gv(X + Y )), where Calt(X,Y ) = C(X·Y ) is the
species of alternating oriented cycles of two sorts of elements, weighted by tn (n being the length
of the cycle), Gv is the species of simple graphs weighted by re (where e is the number of edges of
the graph), and Aw is the species of rooted trees weighted by sf (where f is the number of leaves
of the rooted tree). Figure 3.8 represents an Fr,s,t-structure as well as its weight.

For F = Fw(Y1, . . . , Ym), the functorial composition F � (G1, . . . , Gm) = F [G1, . . . , Gm] is only
defined if each Gi is not weighted. One then sets

F � (G1, . . . , Gm)[U1, . . . , Uk] = F [G1[U1, . . . , Uk], . . . , Gm[U1, . . . , Uk]].
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Figure 3.8: An Fr,s,t-structure of weight r11s9t4.

The weight of an Fw[G1, . . . , Gm]-structure s on (U1, . . . , Uk) is, by definition, its weight as an
Fw-structure on (G1[U1, . . . , Uk], . . . , Gm[U1, . . . , Uk]). There are as many notions of partial differ-
entiations ∂

∂Xi
as sorts. For a k-sort species F = Fw(X1, . . . , Xk), one sets

(
∂

∂Xi
F )[U1, . . . , Uk] = F [U1, . . . , Ui + {∗i}, . . . , Uk],

the weight of a (∂F/∂Xi)-structure s on (U1, . . . , Uk) being equal to the weight of s as an F -
structure of (U1, . . . , Ui + {∗i}, . . . , Uk). The usual rules of differential calculus remain valid for
multisort species. For example, the following partial differentiation chain rule holds: if F , G and
H are two-sort species (X and Y ), then

∂

∂X
F (G,H) = FX(G,H)

∂G

∂X
+ FY (G,H)

∂H

∂X
,

where FX = ∂F/∂X. There are also k operations of pointing which are carried out by setting, for
i = 1, . . . , k,

F •i = Xi
∂

∂Xi
F.

We leave to the reader the task of formulating the precise definitions of the diverse combinatorial
operations introduced, with regard to the transport of structures.

The generating series of weighted multisort species are defined by introducing one formal
variable x, y, z, t, . . . for each sort X,Y, Z, T, . . . . For the case of index series, it is necessary to
introduce an infinite number of formal variables

x1, x2, . . . ; y1, y2, . . . ; z1, z2, . . . ; t1, t2, . . . ; . . . ,
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for each sort X,Y, Z, T, . . . . Here is the definition of these series in the case of two sorts. It is
straightforward to state the corresponding definitions in the general case.

Definition 3.27. Let F = Fw(X,Y ) be a weighted two-sort species. The generating series Fw(x, y),

the type generating series F̃w(x, y) and thecycle index series ZFw are defined by

Fw(x, y) =
∑
n,k≥0

|F [n, k]|w
xn

n!

yk

k!
,

where |F [n, k]|w is the total weight of F -structures on ([n], [k]),

F̃w(x, y) =
∑
n,k≥0

|F [n, k]/∼ |w xnyk,

where |F [n, k]/∼ |w is the total weight of unlabelled F -structures on ([n], [k]),

ZFw(x1, x2, x3, . . . ; y1, y2, y3, . . .) =
∑
n,k≥0

1

n!k!

∑
σ∈Sn
τ∈Sk

|FixF [σ, τ ]|w xσ11 xσ22 . . . yτ11 y
τ2
2 . . . ,

where |FixF [σ, τ ]|w is the total weight of F -structures on ([n], [k]) that are left fixed under transport
along (σ, τ).

One has the formulas

Fw(x, y) = ZFw(x, 0, 0, . . . ; y, 0, 0, . . .), (3.13)

F̃w(x, y) = ZFw(x, x2, x3, . . . ; y, y2, y3, . . .), (3.14)

and the passage to series is compatible with the combinatorial operations +, ·, ◦, ′ , × ,
•
, and

� . Let us describe explicitly the case of substitution. If F = Fw(X,Y ), G = Gu(X,Y ) and
H = Hv(X,Y ) are three weighted two-sort species X and Y such that G(0, 0) = 0 = H(0, 0), then

a) Fw(Gu, Hv)(x, y) = Fw(Gu(x, y), Hv(x, y)),

b) ˜Fw(Gu, Hv)(x, y) = ZFw(G̃u(x, y), G̃u2(x2, y2), . . . ; H̃v(x, y), H̃v2(x2, y2), . . .),

b) ZFw(Gu,Hv) = ZFw(ZGu , ZHv) = ZFw((ZGu)1, (ZGu)2, . . . ; (ZHv)1, (ZHv)2, . . .),

where, for k ≥ 1, (ZGu)k(x1, x2, x3, . . .) = ZG
uk

(xk, x2k, x3k, . . .). This last substitution is the
plethystic composition of weighted index series, in the variables xi and yi, i = 1, 2, 3, . . ., defined
in an fashion analogous to plethystic substitution for weighted unisort species (see Definition 3.9).
These properties constitute, once more, powerful computational tools in concrete applications.
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Example 3.28. Consider three sorts of elements X, Y and Z. Their sum forms the species
X + Y + Z. An (X + Y + Z)-structure is then a singleton of one of the three sorts X, Y or Z.
Substitution into a unisort species F (X) gives the species F (X+Y +Z). An F (X+Y +Z)-structure
is an F -structure placed on a finite (multi-) set formed from three sorts of elements (possessing
an arbitrary number, possibly zero, of elements of each sort). Thus, the species Stric of tri-colored
permutations can be written in the form Stric(X,Y, Z) = S(X+Y +Z), S = S(X) being the usual
species of permutations on a single sort X. More generally, one can substitute any sum of sorts
(weighted or not, with or without repetitions) for each variable in a weighted multisort species. For
example, beginning with a weighted multisort species Fw(X,Y, Z, T, . . .), one can form the species
Fw(3X + T,Xs, Xs, 5X + 4Yt, . . .), where Xs (respectively, Yt) denotes the species of singletons
of sort X and of weight s (respectively, of sort Y and of weight t). It is interesting to note the
following combinatorial equations:

Fw(mXs, nYt, . . .) = Fw(X,Y, . . .)× E(mXs + nYt + . . .)

= Fw(X,Y, . . .)× (Em(Xs)·En(Yt)· . . .) .

The example of tri-colored permutations Stric(X,Y, Z) = S(X + Y +Z) could lead one to ask
if for any multisort species F = F (X,Y, Z, . . .) there exists a species with one sort H = H(X) such
that F (X,Y, Z, . . .) is of the form H(X + Y +Z + . . .). This is false (just as for functions in many
variables).

Example 3.29. For a combinatorial verification, it suffices, for example, to examine the species
Calt(X,Y ) of alternating oriented cycles on two sorts. To obtain a Calt-structure, one must alter-
nately place elements of sort X and of sort Y to form an oriented cycle (see Figure 3.9 a)). We

X:

Y:

Figure 3.9: a) Alternating color cycle. b) Cycle of colored pairs.

are going to show that for any unisort species H = H(X), we have Calt(X,Y ) 6= H(X + Y ). In-
deed, making the substitution Y := 0 in the equation gives Calt(X, 0) = H(X). An H-structure
must then be an alternating cycle not having any element of sort Y . But an alternating cycle
must have as many elements of each sort, so we deduce that such a structure cannot exist (since a
cycle must always contain at least one element). Thus H = 0 (the empty species) and we deduce
Calt(X,Y ) = 0, which is false. Figure 3.9 b) shows, however, that one has the combinatorial equa-
tion Calt(X,Y ) = C(X·Y ), where C = C(X) is the species of oriented cycles (on the sort X). The
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following series are immediately deduced:

Calt(x, y) = ln

(
1

1− xy

)
, C̃alt(x, y) =

xy

1− xy
, and ZCalt =

∑
k≥1

ϕ(k)

k
ln

(
1

1− xkyk

)
.

Another interesting example of a combinatorial equation comes from the following decompo-
sition of the species C(X + Y ) of oriented cycles on two sorts X, Y of elements:

C(X + Y ) = C(X) + C(Y L(X)).

This formula expresses the fact that if a C(X + Y )-structure has at least one element of sort Y ,
then it can be identified, in a natural manner, to an oriented cycle formed from disjoint chains
of the form yx1x2 . . . xk, where y is an element of sort Y and the xi are distinct elements of sort
X (see Figure 3.10). The reader is invited to analyze the precise form which this equation takes
when passing to generating and index series (see Exercise 3.24). Every weighted multisort species

Figure 3.10: Cycle of disjoint chains.

Fw = Fw(X,Y, Z, . . .) has a canonical decomposition of the form

Fw =
∑
n≥0

Fw;n,

where Fw;n denotes the multisort species Fw restricted to the multicardinality n = (m,n, p, . . .),
defined by

Fw;n[U, V,W, . . .] =

{
Fw[U, V,W, . . .], if (|U |, |V |, |W |, . . .) = n,

∅, otherwise.

To end the present section, we examine an important operation that can be performed on multisort
species: the passage to isomorphism types according to one of the sorts, illustrated here in the case
of two-sort species.

Definition 3.30. Let F = Fv(X,Y ) be an R-weighted two-sort species. Consider two F -structures
s ∈ F [U, V ] and t ∈ F [U ′, V ′]. One says that s and t have the same isomorphism type according
to the sort Y (and one writes s ∼Y t) if U = U ′, and t is obtained from s by transport of structures
along a bijection of the form σ = Id+ θ : U + V −→ U + V ′, where θ : V −→ V ′ is a bijection.
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The class of s according to the equivalence relation ∼Y is called the type of s according to Y
and is denoted by tY s. One says that U is the underlying set of tY s. In more visual terms, one has
s ∼Y t if and only if s and t become equal when the elements of sort Y are made indistinguishable
in their underlying sets. The structure thus obtained represents the type tY s. For each finite set
U , we can consider the set of types according to Y tY F [U ] = {tY s | ∃V, s ∈ F [U, V ]}, of which
U is the underlying set. This set is infinite in general, but summable in R[[y]] if we introduce a
variable y as a counter for the points of sort Y , by analogy with the isomorphism types series of
unisort species. In other words, we define the weight of a type tY s, for s ∈ Fv[U, V ], by setting
w(tY s) = v(s) y|V |. We then have

|tY F [U ]|w = ˜Fv[U, Y )(y),

where Fv[U, Y ) denotes the species of one sort Y derived from Fv(X,Y ) by keeping the first com-
ponent fixed (= U). This gives a species of R[[y]]-weighted structures, denoted τY ;yFv, called the
species of types of F (X,Y )-structures according to the sort Y . The definition of transport
functions is left to the reader. It is sometimes possible to set y = 1 in this process. A sufficient
condition is that the sets tY F [U ] be finite, or that the species F (X,Y ) be polynomial in Y , in the
following sense.

Definition 3.31. Let F = F (X,Y ) be a species on two sorts X, Y , whose canonical decomposition
is

F =
∑
n,k≥0

Fn,k.

We say that F is polynomial in Y if for any n ≥ 0, there exists N ≥ 0 such that k ≥ N implies
Fn,k = 0.

When the species F = Fv(X,Y ) is polynomial in Y , then for each finite set U the set tY F [U ]
of types according to Y is a finite union of sets, that are finite or summable in R, of the form
F [U, V ]/∼Y . It is then itself finite or summable in R and thus determines a species of struc-
tures, denoted by tY F , for which tY F = τY ;yF

∣∣
y=1

, and which could also be denoted by F (X, 1)

(see [163], Section 2.1). More generally, one can define (see Exercise 3.28) the types of a species
Fw(X1, X2, . . . , Xk) according to the sort Xi as well as the (k − 1)-sort species

τXi;xiFw = τXi;xiFw(X1, . . . , Xi−1, Xi+1, . . . , Xk).

Here is an example of a species of the form tY F .

Example 3.32. Consider the species Γ = Γ(X,Y ) of graphs constructed on vertices (of sort X)
and edges (of sort Y ). A Γ-structure on a pair (U, V ) is then a graph in which the set of vertices
is U and the edges (all distinguishable from one another) form the set V . We see also in this case
that Γ is polynomial in Y , for we can select N =

(
n
2

)
+ 1 in the preceding definition. Figure 3.11 a)

illustrates a Γ-structure on the set U = {a, b, c, d, e, f} of vertices and the set V = {m,n, p, q, r, s}
of edges, whereas Figure 3.11 b) shows the tY Γ-structure to which it corresponds, of weight y6.
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This tY Γ-structure is quite simply a graph in the usual sense since the edges (represented by line
segments) have become indistinguishable. We have the equation Gv = tY ;yΓ, where Gv = Gv(X)
denotes the species of simple graphs, with an edge counter y, that is with weight v(g) = ye(g), where
e(g) is the number of edges of the graph g. Moreover, by considering multigraphs, where multiple
edges are allowed, we obtain a weighted species admitting a (summable) infinite set of structures
(see Exercise 3.17).
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Figure 3.11: a) b).

Note the following formulas for the series associated to species of the form tY ;yF :

a) ZTY ;yF (x1, x2, x3, . . .) = ZF (x1, x2, x3, . . . ; y, y
2, y3, . . .),

b) ˜(tY ;yF )(x) = ZF (x, x2, x3, . . . ; y, y2, y3, . . .),

c) tY ;yF (x) = ZF (x, 0, 0, . . . ; y, y2, y3, . . .),

(3.15)

where ZF (x1, x2, x3, . . . ; y1, y2, y3, . . .) denotes the cycle index series of the weighted two-sort species
F = Fv(X,Y ). (See Exercise 3.20 d)).

3.3 Exercises

Exercises for Section 3.1

Exercise 3.1. Let K ⊆ C be an integral domain andR = K[[t1, t2, . . .]], a ring of formal power series
in the variables t1, t2, . . . . We say that the weighted set (A,w), where w : A→ R, is summable if,
for any monomial µ = tn1

1 tn2
2 . . . in the variables t1, t2, . . . , the following set

Wµ = {a ∈ A | [µ]w(a) 6= 0}

is finite (recall that [µ]w(a) = [tn1
1 tn2

2 . . . ]w(a) denotes the coefficient of the monomial µ in the
formal series w(a)). We define the inventory (or total weight or cardinal) of a summable weighted
set (A,w), as being the unique element of R (i.e., the formal series), denoted by |A|w =

∑
a∈Aw(a),

satisfying

[µ] |A|w =
∑
a∈Wµ

[µ]w(a)
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for any monomial µ = tn1
1 tn2

2 . . . . Let (A,w) be a weighted summable set.

a) Show that if S ⊆ A and wS : S → R denotes the restriction of w to S, then the weighted set
(S,wS) is summable.

b) Show that if (B, v) is a weighted set such that (A,w) ' (B, v) (see Definition 3), then (B, v)
is summable and |A|w = |B|v.

c) Show that if (B, v) is a summable weighted set then the weighted sets sum, (A,w) + (B, v),
and product, (A,w)×(B, v) (see Definition 4), are summable and the formulas (3.2) are valid.

Exercise 3.2. a) Let A = N+ = {1, 2, 3, . . . } and set w(a) = t1t
2
2 . . . t

a
a for all a ∈ A. Show that

A is summable and calculate the inventory |A|w.

b) Denote by τ(n), the number of divisors of an integer n ≥ 1. Is the weighted set (N+, v), where
v(n) = tτ(n), summable?

c) Let A be the (infinite) set of all the trees on the set of vertices {1, 2, . . . , n}, where n runs
over N+. Define the weight w(a) of a tree a by w(a) = tn1

1 tn2
2 . . . , where ni is the number of

vertices of degree i in a, i = 1, 2, 3, . . . . Show that A is summable and interpret the inventory
|A|w combinatorially.

Exercise 3.3. Let A,B and C be disjoint sets, with |A| = a, |B| = b, and |C| = c. Denote by
Inj(A,A ∪B) the set of injective functions f : A→ A ∪B weighted by w(f) = λcyc(f).

a) Show that

|Inj(A,A ∪B)|w = (λ+ b)<a> = (λ+ b) (λ+ b+ 1) . . . (λ+ b+ a− 1)

b) Establish an isomorphism of weighted sets

Inj(A ∪B,A ∪B ∪ C)
∼−→ Inj(A,A ∪ C)× Inj(B,A ∪B ∪ C)

and write the identity which corresponds to it.

Exercise 3.4. a) Establish Proposition 11, excluding (3.4), e′).

b) Show that Definition 9 makes sense and verify the summability conditions which are implicit
in formula (3.3).

Exercise 3.5. a) Verify formulas (3.5) giving the generating and index series of the species Sw
of permutations with cycle counter α.

b) Show moreover that

i) |S[n]|w = α<n> = α(α+ 1) . . . (α+ n− 1),
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ii) for a permutation σ of type (σ1, σ2, . . . )

|FixS[σ]|ω =
∏
j≥1

ωj(α) (ωj(α) + j) · · · (ωj(α) + j (σj − 1)).

where ωn(α) =
∑

d|n φ(d)αn/d.

c) Verify formulas (3.6) giving the generating and index series of the species Parw of weighted
partitions by block count.

d) Show that ∑
n≥0

n∑
k=0

S(n, k)tk
xn

n!
= exp(t(ex − 1)).

Exercise 3.6. a) Prove formulas (3.7) giving the generating and index series of the weighted
species Endv of endofunctions, described in Example 3.14.

b) Establish formula (3.8) for |End[n]|v. Hint: Take as known that the number of forests made
up of k rooted trees on n vertices is given by k

n

(
n
k

)
nn−k, n > 0.

Exercise 3.7. Lyndon words and types of colored permutations. Consider the alphabet

A = N+ = {1, 2, 3, . . . },

weighted by the function w(i) = ti. Then |A|w = p1, and more generally, for k ≥ 1, |A|wk =
tk1 + tk2 + · · · = pk. Denote by An the set of all words of length n (n ≥ 0) and by A∗ the set
of all the words in the alphabet A. One extends the weighting w to A∗ by associating to the
word ij . . . k ∈ A∗, the commutative word (or monomial) titj . . . tk. A∗ forms a monoid under
concatenation. Two words m and m′ are said to be conjugates if there exists a factorization
m = uv so that m′ = vu. This constitutes an equivalence relation for which the classes are called
the circular words. A Lyndon word is a primitive (i.e., not a positive power of another word)
word which is smaller than all its conjugates with respect to the lexicographic order. Denote by
C(n) the set of circular words of length n and by L(n), the set of Lyndon words of length n.

a) Show that for n ≥ 1,

i) |C(n)|w =
∑

d|n |L(n/d)|wd ,
ii) |An|w = pn1 =

∑
d|n

n
d |L(n/d)|wd ,

iii) |L(n)|w = 1
n

∑
d|n µ(d) p

n/d
d ,

iv) |C(n)|w = 1
n

∑
d|n φ(d) p

n/d
d ,

Hint: Here µ denotes the Möbius function and φ Euler’s φ-function. Use the fact that
φ(n) = n

∑
d|n

µ(d)
d .
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b) Consider the weighted species Xτ = Xt1 +Xt2 + . . . , the species C of cyclic permutations, and
the composite species C(Xτ ), whose structures are called colored cycles. Show that there
exists an isomorphism of weighted sets between (C(n), w) and unlabeled Cn(Xτ )−structures
and that

C̃(Xτ ) (x) =
∑
n≥1

xn

n

∑
d|n

φ(d) p
n/d
d =

∑
m≥1

φ(m)

m
log

1

1− pmxm
.

Deduce formula (2.20) giving the index series ZC .

c) A colored cycle is called asymmetric if its only automorphism is the identity. Denote by
C(Xτ ), the species of colored asymmetric cycles. Show that there exists an isomorphism of
weighted sets between Lyndon words and unlabeled colored asymmetric cycles. Deduce that

C(Xτ ) (x) =
∑
n≥1

xn

n

∑
d|n

µ(d) p
n/d
d =

∑
m≥1

µ(m)

m
log

1

1− pmxm
.

d) Show that every word µ ∈ A∗ can be written in a unique manner as a product µ = `1`2 . . . `k,
where the `i are Lyndon words and `1 ≥ `2 ≥ · · · ≥ `k with respect to the lexicographic order
(see Chapter 5 of [227] or Chapter 8 of [280]). Deduce that the series |A∗|w = 1/(1− p1) can
be viewed as the inventory of unlabeled assemblies of asymmetric colored cycles.

e) Show that |L(n)|wk is the inventory of words of length nk that are circular and k-symmetric,
that is to say, of the form uk, where u is primitive. Show that the series 1/(1− pk) can be
considered as the inventory of unlabeled assemblies of k-symmetric colored cycles, that is to
say, whose automorphism group is the cyclic group of order k.

f) An S(Xτ )-structure is called a colored permutation. It is an assembly of colored cycles. By
regrouping these colored cycles according to the order of their automorphism group, deduce
from e) that

S̃(Xτ ) (x) =
∏
k≥1

1

1− pk xk

g) A colored permutation is called asymmetric if its only automorphism is the identity. It
consists of an injective assembly (i.e., whose members are pairwise non-isomorphic) of colored
asymmetric cycles. Denote by S(Xτ ), the species of asymmetric colored permutations. Show
that the series p2/(1−p1) can be viewed as the inventory of unlabeled non-injective assemblies
of asymmetric colored cycles (see [266]). Deduce that

S(Xτ ) (x) =
1− p2x

2

1− p1 x

Exercise 3.8. Hermite polynomials. The (unitary) Hermite polynomials can be defined by
formulas (3.10) or (3.11), that is to say from the combinatorial model of involutions ϕ weighted by
w(ϕ) = tϕ1(−1)ϕ2
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a) Show that Hn(t) =

bn
2
c∑

k=0

(−2)−k
n!

k!(n− 2k)!
tn−2k.

b) A variant Hn(t) of the Hermite polynomials is defined by the renormalization Hn(t) =
2n/2Hn(t

√
2). Show that ∑

n≥0

Hn(t)
xn

n!
= exp(2tx− x2).

c) (Chapter 5 of [60]) Establish formulas (3.12) and show that for any permutation σ of type
(σ1, σ2, . . . )

|Fix Inv[σ]|w =
∏
j≥1

((−1)j−1j)
σj
2 Hσj (ξj),

where

ξj =
tj + χ(j is even)(−1)j/2

((−1)j−1j)1/2
.

d) Show combinatorially that the polynomial y = Hn(t) satisfies the differential equation y′′ −
t y′ + n y = 0.

Hint: study the effect of the derivative on the weighted involutions.

e) Show combinatorially that Hn+1(t) = tHn(t)− nHn−1(t).

f) Mehler’s formula (see [107]). Show that

∑
n≥0

Hn(t1)Hn(t2)
xn

n!
=

1√
1− x2

exp
t1t2x− (t21 + t22) x2/2!

1− x2
,

by considering an appropriate combinatorial model.

g) Linearization coefficients Let ν : R[t] −→ R be the linear functional defined by ν(1) = 1,
ν(t2n) = (2n− 1) (2n− 3) . . . 3 · 1, for n ≥ 1, and ν(t2n+1) = 0, if n ≥ 0. One can show that
in fact

ν(tn) =
1√
2π

∫ +∞

−∞
tne−t

2/2dt.

Denote by I(n), the set of involutions without fixed points. Moreover, for a multicardinal
(n1, n2, . . . , nk), let U1, U2, . . . , Uk be disjoint sets such that |Uj | = nj , j = 1, 2, . . . , k, and
denote by I(n1, n2, . . . , nk), the set of involutions without any fixed color on U = U1 + U2 +
· · · + Uk, that is to say, the involutions ϕ on U such that u ∈ Uj =⇒ ϕ(u) /∈ Uj . Show
combinatorially that

i) ν(tn) = |I(n)|, for n ≥ 1,

ii) ν(Hn(t)) = 0, for n ≥ 1,
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iii) ν(Hn(t)Hm(t)) =

{
n!, if n = m,

0, otherwise.
(orthogonality)

iv) ν(Hn1(t)Hn2(t) . . . Hnk(t)) = |I(n1, n2, . . . , nk)|.

Exercise 3.9. Laguerre polynomials (see Foata and Strehl [113]). The Laguerre poly-

nomials L(α)
n (x) can be defined by the generating series

∑
n≥0

L(α)
n (x)

un

n!
=

(
1

1− u

)α+1

exp

(
−xu
1− u

)
.

a) Deduce a combinatorial model with the help of the weighted species Lag(α) = E(Cα+1) ·
E(L+(−x)), for which we have L(α)

n (x) = |Lag(α)[n]|w. The structures of this species are called
Laguerre configurations.

b) Show that Laguerre configurations can be considered as injective partial endofunctions and
that (see Exercise 3.3)

L(α)
n (x) =

n∑
k=0

(
n

k

)
(α+ 1 + n− k)<k>(−x)n−k.

c) Recurrence formula. Show, by a study of these configurations, that

L(α)
n+1(x) = (α+ 2n− x+ 1)L(α)

n (x)− n (n+ α)L(α)
n−1(x).

d) Give a combinatorial interpretation of the derivative y′ = dy/dx of the polynomial y = L(α)
n (x)

and prove the following formulas using this interpretation:

i) xy′′ + (α+ 1− x) y′ + ny = 0,

ii) x
d

dx
L(α)
n (x) = nL(α)

n (x)− n (n+ α) L(α)
n−1(x), (F.G. Tricomi)

iii)
d

dx
L(α)
n (x) = −nL(α+1)

n−1 (x).

e) Let Ψ be the linear functional defined on the polynomials by Ψ(xn) = (α+ 1)<n>, for n ≥ 0.
It is classical that, for a real α > −1,

Ψ(xn) =
1

Γ(α+ 1)

∫ ∞
0

xn+αe−xdx.

For (n1, n2, . . . , nm) a multicardinal, let U1, U2, . . . , Um be disjoint sets such that |Uj | = nj ,
j = 1, 2, . . . ,m, and let U = U1+U2+· · ·+Um. Denote by L(n1, n2, . . . , nm), the set of colored
derangements of U , that is to say, the permutations σ of U such that u ∈ Uj ⇒ σ(u) /∈ Uj ,
weighted by w(σ) = (−1)|U |(α+ 1)cyc(σ). Show combinatorially that



100 CHAPTER 3. VARIATIONS ON THE THEME SPECIES

i) Ψ(xn) =
∑
σ∈S[n]

(α+ 1)cyc(σ),

ii) Ψ
(
L(α)
n (x)

)
= 0, for n > 0,

iii) Ψ
(
L(α)
n (x) L(α)

m (x)
)

=

{
n!, (α+ 1)<n> if m = n,

0, otherwise.
, (orthogonality)

iv) Ψ(L(α)
n1

(x)L(α)
n2

(x) . . .L(α)
nm(x)) = |L(n1, n2, . . . , nm)|w.

Exercise 3.10. Weighted exponential formulas. Consider a weighted species F = Fw and
suppose that Fw = E(F cw), where F cw is the species of connected Fw-structures.

a) Show that

i) Fw(x) = expF cw(x),

ii) F̃w(x) = exp
∑
k≥1

1

k
F̃ c
wk

(xk),

iii) ZFw(x1, x2, x3, . . .) = exp
∑
k≥1

1

k
ZF c

wk
(xk, x2k, x3k, . . .).

b) Prove the inverse of the preceding formulas

i) F cw(x) = logFw(x),

ii) F̃ cw(x) =
∑
k≥1

µ(k)

k
log F̃wk(xk),

iii) ZF cw(x1, x2, x3, . . .) =
∑
k≥1

µ(k)

k
logZF

wk
(xk, x2k, x3k, . . .)).

where µ denotes the usual Möbius function.

c) Given a formal variable α, define the weighted species Fw(α) by setting, for any Fw-structure
s, w(α)(s) = w(s) · αc(s), where c(s) is the number of connected components of s. Show that

i) Fw(α)(x) = (Fw(x))α,

ii) F̃w(α)(x) =
∏
k≥1

(
F̃wk(xk)

)λk(α)
,

iii) ZF
w(α)

(x1, x2, x3, . . .) =
∏
k≥1

ZF
wk

(xk, x2k, x3k, . . .)
λk(α),

where

λn(α) =
1

n

∑
d|n

µ(n/d)αd.
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d) Given two formal variables α and β, prove that Fw(α+β)(x) = Fw(α)(x)Fw(β)(x), but that in
general

F̃w(α+β)(x) 6= F̃w(α)(x)F̃w(β)(x),

ZF
w(α+β)

6= ZF
w(α)

ZF
w(β)

,

Fw(α+β) 6= Fw(α)Fw(β) ,

Hint: Use the fact that for n ≥ 2, λn(α+ β) 6= λn(α) + λn(β).

e) Given two formal variables α and β, prove the formulas

i) Fw(αβ)(x) = (Fw(α)(x))β,

ii) F̃w(αβ)(x) =
∏
k≥1

(
F̃
wk(α

k)(x
k)
)λk(β)

,

iii) ZF
w(αβ)

(x1, x2, x3, . . .) =
∏
k≥1

ZF
wk

(αk)
(xk, x2k, x3k, . . .)

λk(β).

Hint: Show at first that w(αβ) = Fw(α)(β) . Deduce that for any n ≥ 1,

λn(αβ) =
∑
dk=n

λd(α
k)λk(β). (3.16)

f) Let α = |A|, where A is a finite alphabet.

i) Show that λn(α) is the number of Lyndon words of length n over A (see Exercise 3.7).

ii) Interpret combinatorially formula (3.16) for λn(αβ) in the context of Lyndon words.

Exercise 3.11. a) Let νn(α) = 1
n

∑
d|n φ(d)αn/d. Show that νn(α) =

∑
d|n λd(α) deduce from

Exercise 3.10 c) both formulas (3.5) and (3.6) giving the series associated with the species Sw
and Parw.

b) Also deduce from Exercise 3.10 c) the cyclotomic identities (see [250], and [17],):

i)
1

1− αx
=
∏
k≥1

(
1

1− xk

)λk(α)

,

ii) exp(αx1 +
1

2
α2x2 + . . .) =

∏
k≥1

exp(λk(α)(xk +
1

2
x2k + . . .)).

Hint: Consider the species E(Xα), where Xα is the species of singletons of weight α.
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Exercise 3.12. a) Returning to the notation of Exercise 3.10, show that

λn(−1) =
1

n

∑
d|n

µ(n/d)(−1)d =

{
−1, if n = 1,

0, otherwise.

Hint: Show first that −λn(−1) is a multiplicative function in n, using the fact that the
convolution

(f ∗ g)(n) =
∑
d|n

f(n/d)g(d)

of two multiplicative functions f and g is a multiplicative function (see [3]).

b) Deduce the formulas

i) Fw(−1)(x) =
1

Fw(x)
,

ii) F̃w(−1)(x) =
F̃w2(x2)

F̃w(x)
,

iii) ZF
w(−1)

(x1, x2, . . .) =
ZFw2 (x2,x4,...)

ZFw(x1,x2,...)
.

c) In the case where Fw = S, the species of permutations, let S(−1) = Fw(−1) , that is, the species

of permutations weighted by (−1)cyc(σ). Show that

i) S(−1)(x) = 1− x,

ii) S̃(−1)(x) = (1− x)(1− x3)(1− x5) · · · ,
iii) ZS(−1)

(x1, x2, x3, . . .) = (1− x1)(1− x3)(1− x5) · · · .

Interpret these formulas combinatorially.

d) Consider the case where Fw = E(Xy).

Exercise 3.13. Let E(y) be the species of sets, weighted by w(U) = y|U |, and let ℘w be the species

of subsets, weighted by w(A) = y|A|, for A ∈ ℘[U ]. In other words, the variable y acts as an element
counter. Show that

a) E(y) = E(Xy) and ℘w = E·E(y),

b) ℘w(x) =
∑
n≥0

(1 + y)n
xn

n!
,

c) ℘̃w(x) =
∑
n≥0

1− yn+1

1− y
xn,
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d) Z℘w(x1, x2, . . .) =
∑
n≥0

1

n!

∑
σ∈Sn

((1 + y)x1)σ1((1 + y2)x2)σ2 · · · ,

e) |Fix℘w[σ]| = (1 + y)σ1(1 + y2)σ2 · · · , for any permutation σ.

Exercises for Section 3.2

Exercise 3.14. Let Φ = Φ(X,Y ) be the two-sort species of functions f : U −→ V , where X is
the sort of elements of U and Y that of elements of V . We have

Φ[U, V ] = {f | f : U −→ V }.

The transport of the corresponding structures is obtained by the usual composition of functions:
Φ[σ, θ](f) = θ◦f◦σ−1. Moreover, we introduce the three subspecies Inj (injections), Sur (surjec-
tions), and Bij (bijections) of Φ by setting

Inj[U, V ] = {f | f : U ↪→ V, i.e., f injective},
Sur[U, V ] = {f | f : U−→→V, i.e., f surjective},
Bij[U, V ] = {f | f : U

∼−→V, i.e., f bijective}.

a) Show that

i) Φ(X,Y ) = E(E(X)·Y ), ii) Inj(X,Y ) = E((1 +X)·Y ),

iii) Sur(X,Y ) = E(E+(X)·Y ), iv) Bij(X,Y ) = E(X·Y ).

b) Prove by combinatorial computations, as well as by geometric arguments, the following equal-
ities (isomorphisms):

i)
∂

∂X
Φ = Y

∂

∂Y
Φ,

ii) (1 +X)
∂

∂X
Inj = Y

∂

∂Y
Inj,

iii)
∂

∂X
Sur = Y (1 +

∂

∂Y
)Sur,

iv)
∂

∂X
Bij = Y Bij,

∂

∂Y
Bij = X Bij,

v) Bij(X,Y ) = Bij(Y,X).

c) Show that the series Φ̃ = Φ̃(x, y) and ZΦ = ZΦ(x1, x2, x3, . . . ; y1, y2, y3, . . .) are given by the
formulas

i) Φ̃ =
1

(1− y)(1− xy)(1− x2y) · · · (1− xky) · · ·
,
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ii) ZΦ = exp

∑
n≥1

yn
n

exp
∑
m≥1

xmn
m

.

d) Compute explicitly the six other series: ZInj, ZSur, ZBij, Ĩnj, S̃ur, and B̃ij.

e) More generally, for a speciesR on one sort, define the two-sort species ΦR(X,Y ) = E(R(X)·Y ),

of functions with R-enriched fibers. Compute the series ZΦR and Φ̃R.

Exercise 3.15. Denote by Octalt = Octalt(X,Y ), the species of alternating octopuses on two
sorts of elements X, Y , i.e., the octopuses on X and Y in which the adjacent elements are of
different sort.

a) Verify that Octalt(X,Y ) = Calt(X·L(Y ·X)·(1 + Y ), Y ·L(X·Y )·(1 +X)).

b) Deduce that

i) Octalt(x, y) = log
(1− xy)2

1− xy(3 + x+ y)
,

ii) Õctalt(x, y) =
∑
n≥1

φ(n)

n
log

(1− xnyn)2

1− xnyn(3 + xn + yn)
,

iii) ZOctalt =
∑
n≥1

φ(n)

n
log

(1− xnyn)2

1− xnyn(3 + xn + yn)
.

Exercise 3.16. Consider the species Smix(X,Y ) of permutations on two sorts X and Y , where
each cycle has at least one element of each sort.

a) Show that S(X)S(Y )Smix(X,Y ) = S(X + Y ).

b) Deduce the formulas:

i) Smix(x, y) =
(1− x)(1− y)

1− x− y
.

ii) S̃mix(x, y) =
∏
n≥1

(1− xn)(1− yn)

1− xn − yn
,

iii) ZSmix =
∏
n≥1

(1− xn)(1− yn)

1− xn − yn
.

Exercise 3.17. Consider the species Γ = Γ(X,Y ) of graphs on vertices of sort X, and of edges
of sort Y , introduced in Example 3.32, as well as the species of multigraphs Γmult = Γmult(X,Y ),
where multiple edges are permitted.

a) Verify the following equalities
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i) Γ(x, y) = tY ;yΓ(x) =
∑
n≥0

(1 + y)(
n
2)
xn

n!
,

ii) Γmult(x, y) =
∑
n≥0

(ey)(
n
2)
xn

n!
,

iii) tY ;yΓmult(x) =
∑
n≥0

(
1

1− y

)(n2) xn

n!
.

b) Show that

i) Γ(X,Y ) = Inj � (ε(Y ), ℘[2](X)),

ii) Γmult(X,Y ) = Φ � (ε(Y ), ℘[2](X)),

where ε denotes the species of elements (see Section 1.1), and ℘[2], that of subsets with two
elements (see Section 2.4).

c) More generally, for a unisort species R, define the two-sort species of multigraphs with an
R-enrichment on the edges having the same endpoints, by ΓR(X,Y ) = ΦR � (ε(Y ), ℘[2](X))
(see Exercise 3.14). Verify that

ΓR(x, y) =
∑
n≥0

R(y)(
n
2)
xn

n!
.

Exercise 3.18. Consider the two-sort species B = B(X,T ), of rooted trees on internal vertices of
sort X and leaves of sort Y (see Figure 3.5). Let Aw = Aw(X) be the weighted species of rooted
trees on vertices of sort X, the weight of each rooted tree α being given by w(α) = tf , where f is
the number of leaves of α. Verify the combinatorial equality Aw(X) = B(X,Xt), where Xt is the
species of singletons of weight t. Do not forget transports of structures.

Exercise 3.19. Functorial point of view. Let k be an integer ≥ 1. Denote by B, the category
of finite sets and bijections, and by Bk = B × · · · × B, the category, product of k copies of B, of
finite multisets (of k sorts) and of multibijections. Consider also the category, denoted by Φ(B, [k]),
whose objects are the pairs (U, χ), where U is a finite set and χ : U −→ [k] is a function, and whose
morphisms σ : (U, χ) −→ (V, ψ) are the bijections σ : U −→ V such that ψ◦σ = χ. Let R be a ring
of formal power series on a ring K ⊆ C. Denote by ER, the category of summable R-weighted sets
and R-weighted morphisms of sets (see Definitions 3.2 and 3.3).

a) Show that the categories Bk and Φ(B, [k]) are equivalent by explicitly describing functors R :
Bk −→ Φ(B, [k]) and S : Φ(B, [k]) −→ Bk as well as mutually inverse natural transformations
α : S◦R −→ IdBk and β : R◦S −→ IdΦ(B,[k]).

b) Show that a weighted k-sort species F = Fv can be considered as a functor F : Bk −→ ER or
equivalently, as a functor F : Φ(B, [k]) −→ ER.
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Exercise 3.20. a) Complete the definitions of the combinatorial operations (+, ·, ◦, ×, � ) on
species in the weighted multisort context, not forgetting transports of structures in each case.

b) State and prove the properties of these combinatorial operations, in analogy with formulas of
Esercises 2.1, 2.4, 2.14, 2.44, and 2.53.

c) Describe the behavior of generating and index series with respect to these operations. In
particular, prove formulas (3.13) and (3.14).

d) Prove formulas (3.15) for the series associated to the species of types according to sort.

e) Extend these results to multisort species.

Exercise 3.21. a) Let F = F (X1, X2, . . . , Xk) and G = G(X1, X2, . . . , Xk), be species on many
sorts X1, X2, . . ., Xk. Prove for i = 1, . . . , k the equalities

i)
∂

∂Xi
(F +G) =

∂

∂Xi
F +

∂

∂Xi
G,

ii)
∂

∂Xi
(F ·G) =

(
∂

∂Xi
F

)
·G+ F ·

(
∂

∂Xi
G

)
,

iii)
∂2

∂Xi∂Xj
F =

∂2

∂Xj∂Xi
F .

b) Consider the species F = F (Y1, Y2, . . . , Ym) and Gj = Gj(X1, X2, . . . , Xk), j = 1, . . . ,m.
Prove the chain rule

∂

∂Xi
F (G1, G2, . . . , Gm) =

m∑
j=1

∂F

∂Yj
(G1, G2, . . . , Gm)· ∂

∂Xi
Gj .

Exercise 3.22. Consider a species on many sorts F = F (X1, X2, . . . , Xk). Interpret combinatori-
ally the following species:

a)
k∑
i=1

Xi
∂

∂Xi
F, b) X2

∂

∂X1
F, and c)

∑
i 6=j

Xi
∂

∂Xj
F.

Exercise 3.23. Show that the species Gchro = Gchro(X,Y, Z) of tri-chromatic graphs (see Exam-
ple 3.17) is not of the form F (X + Y + Z), where F is a unisort species.

Exercise 3.24. Write explicitly the three identities between generating and cycle index series
which correspond to the combinatorial equality C(X + Y ) = C(X) + C(Y ·L(X)).

Exercise 3.25. a) Show that by taking the types according to Y of the species Sur(X,Y ) of
surjections, one obtains the species Parv(X) of partitions weighted by v(π) = yb(π), where
b(π) is the number of blocks of π, i.e., Parv(X) = tY ;ySur(X,Y ).

b) Deduce that the Stirling numbers of the second kind S(n, k) are given by S(n, k) =
|Sur[n, k]|

k!
.
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c) Establish the combinatorial identity Φ(X,Y ) = Sur(X,Y )·E(Y ) and deduce Touchard’s for-
mula, ∑

n,k≥0

kn
xn

n!

yk

k!
=
∑
n,k≥0

S(n, k)
xn

n!
yk ·

∑
j≥0

yj

j!
.

d) Deduce Dobinski’s formula for Bell numbers,

Bn =
1

e

∑
k≥0

kn

k!
, n ≥ 0.

Exercise 3.26. Consider the species S(X,Y ) = S(X + Y ) of permutations of elements of sort X
and elements of sort Y .

a) Describe, using a geometric figure, a typical tY S-structure on a finite set U .

b) Compute the three series (tY ;yS)(x), ˜(tY ;yS)(x) and ZtY ;yS(x1, x2, x3, . . .).

Exercise 3.27. a) Show that the species B = B(X,T ) of Exercise 5 is not polynomial in X nor
in T .

b) Let k be an integer ≥ 1, and consider the subspecies F of B formed of rooted trees in which
each internal vertex is of degree ≤ k. Show that F = F (X,T ) is polynomial in T but not in
X.

c) Let k be an integer ≥ 1, and consider the subspecies G of B formed of rooted trees in which
each internal vertex is of degree between 2 and k. Show that F = F (X,T ) is polynomial both
in T and in X.

Exercise 3.28. Let Fv = Fv(X1, . . . , Xk) be an R-weighted multisort species. Let i be an integer
such that 1 ≤ i ≤ k.

a) Define the type tXis of an Fv-structure s according to the sort Xi, as well as its weight
w(tXis) ∈ R[[xi]].

b) Define the R[[xi]]-weighted species tXi;xiFv of types of Fv-structures according to the sort Xi.

c) Give finiteness conditions ensuring existence of the species tXiFv = tXi;xiFv
∣∣
xi=1

.

Exercise 3.29. Generalized pointing. Consider two species of structures F = F (X) and
G = G(X). Define the F -pointing of G as being the species, denoted by F 〈〈X d

dX 〉〉G(X), given
by

F 〈〈X d
dX 〉〉G(X) = (F (X)·E(X))×G(X).

a) Give a combinatorial (geometrical) description of this definition.
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b) Given a polynomial p(u, v, w, . . .) =
∑

i,j,k,... pi,j,k,... u
ivjwk · · · , let us agree to write

p〈〈u, v, w, . . .〉〉 =
∑
i,j,k,...

pi,j,k,... u<i>v<j>w<k> · · · ,

where x<n> = x (x − 1) (x − 2) · · · (x − n + 1). Suppose that F is polynomial in X (see
Exercise 19) and set H(X) = F 〈〈X d

dX 〉〉G(X). Establish the equalities

i) H(x) = F 〈〈x d
d x〉〉G(x),

ii) H̃(x) = ZF 〈〈x1
∂
∂x1

, 2x2
∂
∂x2

, 3x3
∂
∂x3

, . . .〉〉ZG
∣∣∣
xi:=xi, i≥1

,

iii) ZH(x1, x2, x3, . . .) = ZF 〈〈x1
∂
∂ x1

, 2x2
∂
∂ x2

, 3x3
∂
∂ x3

, . . .〉〉ZG(x1, x2, x3, . . .).

Exercise 3.30. a) Show that the species Γ = Γ(X,Y ), Γmult = Γmult(X,Y ) and ΓR = ΓR(X,Y ),
of Exercise 4, satisfy the combinatorial equations (see Knuth [155])

i) (1 + Y )
∂

∂Y
Γ(X,Y ) = E2〈〈X ∂

∂X 〉〉Γ(X,Y ),

ii)
∂

∂Y
Γmult(X,Y ) = E2〈〈X ∂

∂X 〉〉Γmult(X,Y ),

iii) R(Y )
∂

∂Y
ΓR(X,Y ) = R′(Y )E2〈〈X ∂

∂X 〉〉ΓR(X,Y ).

b) Write the implied relations for the generating and index series.

Exercise 3.31. Generalized Taylor Formula. Given two species of structures F = F (X)
and G = G(X), we define the two-sort (X and T ) species F (T ∂

∂X )G(X) by setting

F (T ∂
∂X )G(X) = (E(X)·F (T ))×G(X + T ).

a) Give a geometrical description of this combinatorially definition for structures of species
F (T∂/∂X)G(X) on a pair of finite sets (U, V ).

b) Set H(X,T ) = F (T ∂
∂X )G(X). Establish combinatorially the following relations:

i) H(x, t) = F (t ∂∂x)G(x),

ii) H̃(x, t) = (ZF (t1
∂
∂x1

, 2 t2
∂
∂x2

, 3 t3
∂
∂x3

, . . .)ZG)
∣∣∣
xi:=xi, ti:=ti, i=1,2,...

,

iii) ZH(x1, x2, . . . ; t1, t2, . . .) = ZF (t1
∂
∂x1

, 2 t2
∂
∂x2

, . . .)ZG(x1, x2, . . .).

The F -Taylor expansion of G(X) in T is defined by the formula

(E(X)·F (T ))×G(X + T ) =
∑
k≥0

Fk(T
∂
∂X )G(X)

where F = F0 + F1 + F2 + . . . is the canonical decomposition of F . By letting X := 0 above
we obtain, by definition, the F -Maclaurin expansion of G(X) in T :

F (T )×G(T ) =
∑
k≥0

Fk(T
∂
∂X )G(X)

∣∣
X:=0

.
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c) Show that the Taylor expansion and Maclaurin expansion above are indeed summable and
prove the combinatorial identities. In particular, when F = E, show that these series take
the form:

G(X + T ) = G(X) + T G′(X) + E2(T ∂
∂X )G(X) + . . .+ Ek(T

∂
∂X )G(X) + . . . .

d) Verify that the following “classical” formulas are satisfied:

i) G(x+ t) = et
∂
∂xG(x) = G(x) + tG′(x) +

t2

2!
G′′(x) + . . .+

tk

k!
G(k)(x) + . . .,

ii) G(t) = et
∂
∂xG(x)

∣∣∣
x:=0

= G(0) + tG′(0) +
t2

2!
G′′(0) + . . .+

tk

k!
G(k)(0) + . . .,

iii) ZG(X+T )(x1, x2, . . . ; t1, t2, . . .) = ZG(x1+t1, x2+t2, . . .) = e
t1

∂
∂x1

+t2
∂
∂x2

+...
ZG(x1, x2, . . .),

iv) ZG(t1, t2, . . .) = e
t1

∂
∂x1

+t2
∂
∂x2

+...
ZG(x1, x2, . . .)

∣∣∣
xi:=0, i=1,2,...

.

Exercise 3.32. Generalized differentiation. Let F = F (X) be a polynomial species in X
(i.e., there exists N ≥ 0 such that |U | > N =⇒ F [U ] = ∅). Given a species G = G(X), define the
species F ( d

dX )G(X) by setting

F ( d
dX )G(X) = tY [(E(X)·F (Y ))×G(X + Y )] ,

where Y is an auxiliary sort different from X.

a) Show that the species (E(X)·F (Y ))×G(X + Y ) is polynomial in Y and interpret combina-
torially the definition above by describing geometrically an F ( d

dX )G(X)-structure on a finite
set U .

b) Set H(X) = F ( d
dX )G(X). Establish the relations

i) H(x) = F ( d
d x)G(x), if F = Xn, but H(x) 6= F ( d

d x)G(x) in the general case,

ii) H̃(x) = {ZF ( ∂
∂ x1

, 2 ∂
∂ x2

, 3 ∂
∂ x3

, . . .)ZG}
∣∣
xi:=xi, i≥1

,

iii) ZH(x1, x2, x3, . . .) = ZF ( ∂
∂ x1

, 2 ∂
∂ x2

, 3 ∂
∂ x3

, . . .)ZG(x1, x2, x3, . . .).
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[71] H. Décoste, Séries indicatrices et q-series, Theoretical Computer Science, 117, 1993,
169–186.
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pean Journal of Combinatorics, 4, 1983, 305–311.

[111] D. Foata and P. Leroux, Polynômes de Jacobi, interprétation combinatoire et fonction
génératrice, Proceedings of the American Mathematical Society, 87, 1983, 47–53.

[112] D. Foata and M.P. Schutzenberger, Théorie géométrique des polynômes Eulériens,
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[155] S. Janson, D.E. Knuth, T. L/uczak, and B. Pittel, The Birth of the Giant Component,
Random Structures and Algorithms, 4, 1993, 233-358.

[156] S.A. Joni, Lagrange Inversion in Higher Dimensions and Umbral Operators, Linear and
Multilinear Algebra, 6, 1978, 111–121.

[157] S.A. Joni and G.C. Rota, Coalgebras and Bialgebras in Combinatorics, Studies in Ap-
plied Mathematics, 61, 1979, 93–139.
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[161] A. Joyal, Règle des signes en algèbre combinatoire, Comptes rendus mathématiques
de l’Académie des sciences, La société royale du Canada, VII, 1985, 285–290.
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binatoire, 14e session, Ed. V. Strehl, Publications de l’Institut de recherche mathématiques,
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et d’informatique mathématique Vol. 21, 1995.
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according to sort, 93

vertebrate
degenerate, 49
head, 49
tail, 49
vertebral column, 49

weight, 76
preserving, 76
trivial, 77

weighted multisort species, 87
weighted sets

isomorphism, 76
weighted species, 77
word, 96

conjugate, 96
lyndon, 96


	Introduction
	Species
	Species of Structures
	General definition of species of structures
	Species described through set theoretic axioms
	Explicit constructions of species
	Algorithmic descriptions
	Using combinatorial operations on species
	Functional equation solutions
	Geometric descriptions

	Associated Series
	Generating series of a species of structures
	Type generating series
	Cycle index series
	Combinatorial equality
	Contact of order n

	Exercises

	Operations on Species
	Addition and multiplication
	Sum of species of structures
	Product of species of structures

	Substitution and differentiation
	Substitution of species of structures
	The derivative of a species of structures

	Pointing and Cartesian product
	Pointing in a species of structures
	Cartesian product of species of structures

	Functorial composition
	Exercises

	Variations on the theme Species
	Weighted species
	Extension to the multisort context
	Multisort species
	Weighted multisort species

	Exercises


