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Abstract

We study different problems of enumeration of standard paths in the poset of compositions of integers. We

show that several problems similar to those considered in the poset of partitions of integers become simpler in

this context. We give explicit formulas for generating functions of standard paths in this poset and interesting

subposets, and a closed formula for the number of standard paths ending at a given composition.

Résumé

Nous étudions différents problèmes d’énumération de chemins standard dans l’ensemble partiellement or-

donné des compositions. Nous montrons comment plusieurs questions, analogues à celles que l’on étudie dans

le cas du treillis des partages d’entiers, se révèlent plus simples dans ce contexte. Nous donnons des formules

explicites pour les séries génératrices des chemins standard dans cet ensemble partiellement ordonné et dans

certains sous-ensembles intéressants. Nous démontrons également une formule donnant le nombre de chemins

standard - ou tableaux - de forme finale fixée.

1. Introduction

The poset of partitions of integers, the so-called Young lattice, has been studied by many authors (see [6]
[3] [10]) and it is well known that this study is closely related to the study of irreducible representations of the
symmetric group and their characters, as well as other subjects in algebraic geometry and algebra. Sergey
Fomin, in the footsteps of Richard Stanley, has shown that several aspects of this study can be extended
to other posets [3] [10]. One of these aspects is the enumeration of up-going paths going from the minimal
element of the poset to some given element. For instance, in the partition lattice these paths correspond to
standard Young tableaux of a given shape. Fomin gives a general setup for the enumeration of such paths
as well as for pairs of paths with same endpoint. However, the problem studied here does not fall into his
framework in a straightforward manner.

We study in this paper the poset of compositions of integers. Let us recall that a composition P is a
sequence of positive ( > 0) integers (p1, p2, . . . , pk). The pi’s are called the parts of the composition and k,
the number of parts, is said to be the length `(P ) of P . The weight |P | of a composition P is the sum of its
parts

|P | =
k∑
i=1

pi.

If |P | = n, we say that P is a composition of n and write P |= n. Similarly, a partition λ of n is a non-
decreasing sequence of positive integers λ1 ≤ λ2 ≤ · · · ≤ λk that sum to n, and we write λ ` n. The
partition obtained by reordering the parts of a composition P in non-decreasing order is denoted λ(P ).

We say that a composition Q covers a composition P if Q is obtained either by adding 1 to a part of P ,
or by adding a part of size 1 to P . The partial order obtained by transitive closure of this covering relation
is denoted ≺ and the poset thus obtained is denoted Γ. For partitions, the analogous order corresponds to
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the inclusion of Ferrers diagrams. The poset of partitions is denoted Λ and the function λ : Γ −→ Λ, defined
above, is a morphism of graded posets (graded by |P |).

Our first objective will be the enumeration, with some parameters, of “standard” (up-going) paths
starting with the composition (1) and finishing at P |= n. We will then consider such enumeration problems
for several subposets obtained by restrictions on the compositions.

A standard path of length n is a sequence γ = (P1, P2, . . . , Pn) of compositions such that

P1 ≺ P2 ≺ P3 ≺ · · · ≺ Pn,

with Pi |= i. The path γ is said to end at the composition Pn. We now give a geometric representation for
standard paths. First, define the diagram of a composition P to be the set of points (i, j) ∈ Z2 such that
1 ≤ j ≤ pi. It is convenient to replace the node (i, j) by the square with corners (i − 1, j − 1), (i − 1, j),
(i, j − 1) and (i, j). For a standard path ending at P , we label the squares of the diagram of P in the order
of their apparition in the path. If P is obtained by adding a part of size 1 to a composition, we consider
that this new part has been added at the beginning of a sequence of ones (if any), for otherwise the encoding
would be ambiguous. For instance, the step

(2, 3, 1, 5) ≺ (2, 3, 1, 1, 5)

is encoded by the addition of the box labeled 12 in Figure 1.
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Figure 1.

The labeled diagram obtained in this manner is called the tableau of the path, and the underlying diagram
(or composition) of the tableau is called its shape. This representation suggests that the length (number of
parts) of the endpoint P of a standard path γ should be called the width of the path, and its largest part
the height of the path.

We obtain an explicit expression for the exponential generating function of standard paths counted
according to their length:

F (x) =
exp(−x)(

cosh
(
x√
2

)
−
√

2 sinh
(
x√
2

))2 , (1)

and show that the enumeration of paths with bounded width is very different from the enumeration of paths
with bounded height. This is best illustrated by the fact that the ordinary generating function of standard
paths of width 2 is the rational function

x2 + x3

(1− x) (1− 2x)

whereas the exponential generating function of paths of height at most 2 is:

1

1− sin(x)
.

This is in sharp contrast with similar enumeration problems in the Young lattice, where the two problems
coincide in view of the order preserving bijection between diagrams of height k and those of width k. In the
sequel of this paper, we denote Γ(k) the subposet of compositions of width ≤ k, and Γ(k) the subposet of
compositions of height ≤ k.
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2. Standard paths in the poset Γ

Denote Γn,i,j the set of compositions of n with i parts of size 1 and j parts of size > 1, and let γn,i,j
be the number of standard paths with endpoint in Γn,i,j . We wish to obtain an explicit expression for the
following exponential generating function:

F (u, v, x) =
∑
n≥0

∑
i,j

γn,i,ju
ivj

 xn

n!
.

We first encode standard paths using permutations, and then encode these permutations as increasing
binary trees.

As usual, a permutation σ of [n] = {1, 2, . . . , n} is denoted by the word σ(1)σ(2) . . . σ(n). The set of
descents of σ is D(σ) = {i | σ(i) > σ(i + 1)}. An increasing factor of σ of length ` is a word σ(i + 1)σ(i +
2) . . . σ(i+ `) such that σ(i+ 1) < σ(i+ 2) < · · · < σ(i+ `). We associate to σ the unique composition of n,
denoted P(σ) = (p1, p2, . . . , pk), such that D(σ) = {p1, p1 + p2, . . . , p1 + p2 + · · ·+ pk−1}. Hence the number
of parts of P(σ), minus one, is the cardinality of D(σ), and the greatest part of P(σ) is the length of the
longest increasing factor of σ.

Let us now recall the classical increasing binary tree encoding of permutations. For any word w =
w1 w2 . . . wn with n ≥ 0 distinct letters on an ordered alphabet, we recursively define the binary tree T (w)
to be the empty tree if w is the empty word, and otherwise

T (w) =
a

, Z
T (u) T (v)

where a = min(w) is the minimum letter in w, and u and v are the factors of w such that w = u a v. Thus
T (u) is the left subtree of the vertex a, and T (v) is its right subtree. The leftmost branch of T (w) is ∅ if
w = ∅, otherwise the subtree composed of a together with the leftmost branch of T (u). The leftmost vertex
of T (w) is defined to be lowest vertex of its leftmost branch. Using the definition of T , the tree corresponding
to the permutation ω = 524136 is

T (524136) =

1

, Z
2

, Z
5 4

3
Z

6

Observe that, when reading up the leftmost branch of T (w), starting with its leftmost vertex (in this case,
5), we obtain the sequence of left-right local minima of w (in our example: 5,2,1).

Clearly, the labels in such a tree will be in increasing order on any path going from the root to a leaf.
T establishes a bijection between permutations of [n] and increasing binary trees with labels {1, 2, . . . , n}.
A jumping-chain in such a tree is a sequence (i1, i2, . . . , i`) of vertices such that ij is the leftmost vertex of
the right subtree of ij−1 , for j ≥ 2. One can check recursively that T satisfies the following properties:

– the number of parts of P(σ), minus one, is the total number of left sons in T (σ),

– the number of parts of size 1 in P(σ) is the number of left sons in T (σ) having no brother, counting the
leftmost vertex of T (σ) whenever it is a leaf,

– the greatest part of P(σ) is the length of the longest jumping-chain of T (σ).

We finally define recursively a bijection S between standard paths of length n and a subset of permuta-
tions of [n], such that the composition associated to S(γ) is the shape of γ. Let γ be a standard path
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(P1, P2, P3, . . . , Pn), where Pn = (p1, p2, . . . , pk), and γ′ = (P1, P2, P3, . . . , Pn−1). Then S(γ) is obtained
from S(γ′) by inserting n either

– in first position, if Pn is obtained by adding a new part of size 1 at the beginning of Pn−1,

– in position p1 + p2 + . . .+ pm, if Pn is obtained from Pn−1 either by adding 1 to the mth part of Pn−1

or by adding a part of size 1 to Pn−1, just after the mth part of Pn−1 (of size > 1 ).

For example, the sequence of permutations associated, through this process, to the path

γ = (1) ≺ (1, 1) ≺ (2, 1) ≺ (1, 2, 1) ≺ (2, 2, 1) ≺ (2, 3, 1) ≺ (2, 4, 1) ≺ (2, 4, 2) ≺ (2, 4, 1, 2),

is
1, 21, 231, 4231, 45231, 452361, 4523671, 45236718, 452369718

hence S(γ) = 452369718.

Note that {p1, p1 +p2, . . . , p1 +p2 + · · ·+pk−1} is the set of descents of S(γ). Hence, S is injective. However,
we do not obtain all permutations of [n] in this manner, since n can not be inserted in the “middle” of a
maximal increasing factor, that is, in a rise that is not the last one of this increasing factor. The set of
permutations actually obtained is easier to characterize in terms of increasing binary trees: the permutation
σ encodes a standard path if and only if any vertex ν of T (σ) not belonging to its leftmost branch satisfies

if ν has two sons, the label of its left son is less than the label of its right son. (C)

Thus, the smallest increasing tree that does not correspond to an encoding of a standard path is:

1
Z

2

, Z
4 3

This is the only excluded tree with four vertices, thus the coefficient of x4/4! in the expansion of (1) will be
23.

Now, since P(S(γ)) = Pn, we can read off the height and the width of γ on the tree T (S(γ)), as well as the
number of parts equal to 1 in Pn.

Proposition 1 – The exponential generating function of standard paths in the composition poset is

F (u, v, x) =
exp(−x)(

cos
(
α
2 x
)
− 1 + u

α sin
(
α
2 x
))2 , (2)

where
α =

√
2 v − (1 + u)2,

the variables u and v accounting respectively for the number of parts of size 1 and those of size > 1 in the
endpoint.

We will give two different proofs of this proposition. The first one is short and natural, but does not explain
how we got formula (2). The second one is based on the permutation encoding of standard paths, and gives
equations for F (u, v, x) that are easy to solve.

First proof. Let’s consider a standard path (P1, . . . , Pn+1) such that Pn+1 belongs to Γn+1,i,j . Then Pn
either belongs to Γn,i,j , Γn,i+1,j−1, or Γn,i−1,j . Conversely, by counting the compositions of Γn+1,i,j that
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cover a given composition of Γn,i,j , Γn,i+1,j−1 or Γn,i−1,j , one finds that the coefficients γn,i,j are totally
determined by the initial conditions γ0,0,0 = 1, γ0,i,j = 0 if i or j is not zero, and the recurrence

γn+1,i,j = jγn,i,j + (1 + i)γn,i+1,j−1 + (1 + j)γn,i−1,j .

Of course, γn,i,j is zero if i or j is negative. This recurrence implies that F (u, v, x) is the unique formal
power series satisfying F (u, v, 0) = 1 and the partial differential equation:

∂

∂x
F (u, v, x) = (1 + u) v

∂

∂v
F (u, v, x) + uF (u, v, x) + v

∂

∂u
F (u, v, x). (3)

One can check that expression (2) satisfies equation (3) with the prescribed initial condition. In order to
derive formula (2) from equation (3), one could replace the above initial condition by F (u, 0, x) = exp(ux)
and ( ∂∂vF (0, v, x))

∣∣
v=0

= exp(x)− 1− x.

Second proof. Using the increasing binary tree encoding of standard paths defined above, the problem of
computing F (u, v, x) becomes a classical problem of enumeration of labeled trees [8], and we obtain:

∂

∂ x
F (u, v, x) = F (u, v, x) (u+G(u, v, x)), F (u, v, 0) = 1,

∂

∂ x
G(u, v, x) = v + (1 + u)G(u, v, x) +

G(u, v, x)2

2
, G(u, v, 0) = 0.

That is the actual system we solved.

Remark. The first few terms of the series F (u, v, x) are:

1 + ux+ (v + u2)
x2

2!
+ (v + 4 v u+ u3)

x3

3!
+ (v + 4 v2 + 6 v u+ 11 v u2 + u4)

x4

4!

+ (v + 14 v2 + 34u v2 + 8 v u+ 23u2v + 26 v u3 + u5)
x5

5!
+ . . .

Setting u = v = 1, we obtain

1 + x+ 2
x2

2!
+ 6

x3

3!
+ 23

x4

4!
+ 107

x5

5!
+ 586

x6

6!
+ 3690

x7

7!
+ 26245

x8

8!
+ 207997

x9

9!
+ . . .

Using the Maple package gdev [9], with the help of Bruno Salvy, we obtained the following expression for
the asymptotic expansion of the coefficient of xn/n! in F (1, 1, x):

((α+ 1) ln(α) + α (n+ 1))

αα ln(α)
2

(
1√

2 ln(α)

)n
n!, (4)

where α = 1 +
√

2. For n from 0 to 9, formula (4) gives the following values

0.83, 0.96, 2.02, 6.02, 22.99, 106.98, 586.01, 3690.06, 26245.03, 207996.78

showing that this approximation is very good even for small values of n.
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3. Standard paths of bounded height

The story is similar for the posets Γ(k) of compositions of height bounded by k. Once again, let Γ
(k)
n,i,j

be the set of compositions of n of height ≤ k, having i parts of size 1 and j parts of size ≥ 2. As before, let

γ
(k)
n,i,j be the number of standard paths with endpoint in Γ

(k)
n,i,j , and

Hk(u, v, x) =
∑
n≥0

∑
i,j

γ
(k)
n,i,ju

ivj

 xn

n!
.

Let’s begin with the simplest non-trivial case : k = 2. We could proceed as in the derivation of F (u, v, x),
writing the basic recurrence:

γ
(2)
n+1,i,j = (1 + j)γ

(2)
n,i−1,j + (1 + i)γ

(2)
n,i+1,j−1,

with n+ 1 = i+ 2j. However, we can easily derive H2(u, v, 1) directly from F (u, v, x) since

lim
x→0

F (u/x, v/x2, x) = H2(u, v, 1).

Hence we get:

H2(u, v, 1) =
1(

cos(β2 )− u
β sin(β2 )

)2 ,

where β =
√

2 v − u2. Observe that for u = x and v = x2, this identity becomes

H2(x, x2, 1) =
1

(cos(x/2)− sin(x/2))
2 =

1

1− sin(x)
=

d

dx
(sec(x) + tan(x)), (5)

showing that the number of standard paths of length n − 1 and height at most 2 coincides with the nth

eulerian number. It is interesting to observe that (5) is not D-finite (see Stanley [11] section 4 a) and
the note below). This illustrates that the problem of enumerating paths in the composition poset Γ(k) is
quite different from the corresponding problem in the context of partitions since it has been shown that the
generating functions for the number of tableaux of bounded height are all D-finite [5][1].

For a general k, the study of Γ(k) becomes more intricate, but the techniques are essentially the same
as those of section 2. Using the increasing binary tree encoding of standard paths, we can derive a system
of differential equations with Hk as one of its solutions.

Proposition 2 – The exponential generating function Hk(u, v, x) of standard paths of height bounded by
k is such that

∂

∂ x
Hk(u, v, x) = Hk(u, v, x) (u+ Ik,k−1(u, v, x))

∂

∂ x
Ik,`(u, v, x) = Jk,`(u, v, x)

∂

∂ x
Jk,`(u, v, x) = Jk,`(u, v, x) (u+ Ik,k−1(u, v, x)) + Jk,`−1(u, v, x),

(6)

for ` = 1, . . . , k−1, with initial conditions Ik,0(u, v, x) = 0, Hk(u, v, 0) = 0, Ik,j(u, v, 0) = 0 and Jk,j(u, v, 0) =
v.

Proof. We will only outline the proof, which uses a classical enumeration technique for labeled trees [8].
These are counted according to their size (variable x) and parameters accounting for the number of parts
equal to 1 and those greater than 1 in the corresponding composition. We consider the following different
classes of increasing binary trees:
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– Hk is the set of increasing binary trees such that all vertices not belonging to the leftmost branch satisfy
condition C, and all jumping-chain-lengths are bounded by k; the generating function for this set is
denoted Hk(u, v, x);

– Ik,` is the set of increasing binary trees such that all vertices satisfy condition C, the length of the
maximal jumping-chain starting from the leftmost vertex is at most `, and all jumping-chain-lengths
are bounded by k; the generating function for this set is denoted Ik,`(u, v, x).

System (6) is obtained by considering the effect of removing the root of such trees. This operation generates
two subtrees, each belonging to one of the previous classes.

Note. The solutions of system (6) are constructible differentially algebraic series as defined in [2]. Recall that
a series y = y(x), with coefficients in K, is said to be constructible differentially algebraic (CDF for short)
if for some k ≥ 1, there exist k series y1, . . . , yk with y1 = y and polynomials P1, . . . , Pk (with coefficients in
K) such that

y′1 = P1(y1, . . . , yk)

...

y′k = Pk(y1, . . . , yk).

The class of CDF series contains polynomials, algebraic series, and series expansions around 0 of usual
functions such as ex, log(1 + x), or trigonometric functions and their inverses. It is closed for sum, product,
composition, derivation, integration, inversion (1/y(x)), and inversion for composition. However it is not
closed under Hadamard product (term-wise product). All CDF series are analytic around 0, hence this class
does not contain the class of D-finite series (see [11] [12]), which is the class of formal series satisfying some
non trivial linear differential equation with polynomial coefficients

p0(x) y + p1(x) y′ + p2(x) y′′ + . . .+ pk(x) y(k) = 0.

Conversely, the series expansion around 0 of 1/ cos(x) is not D-finite, but it is CDF. Thus the two classes
are non-comparable.

4. Standard paths of given width

For the study of the poset Γ(k) of compositions of width k, we consider a refined weight ν on the paths
in this poset, setting, for a path γ of shape (p1, p2, . . . , pk)

ν(γ) = xp11 x
p2
2 · · ·x

pk
k .

We want to compute the generating function

fk(x1, x2, . . . , xk) =
∑

γ path of width k

ν(γ).

Observe that we are now using ordinary generating functions. These turn out to be more convenient in this
case. We have the following simple rule for a recursive computation of the fk’s.
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Proposition 3 – The generating function fk(x1, x2, . . . , xk) of standard paths of width k is a rational
function that can be computed recursively thanks to the following relation:

fk(x1, x2, . . . , xk) =
1

1− x1 − . . . − xk

(
Λ1(fk−1) +

k∑
i=2

Λi (fk−1 −∆i−1(fk−1))

)
,

where, for any function g(x1, . . . , xk),

Λi(g) = xig(x1, x2, . . . , xi−1, xi+1, . . . , xk+1),

and

∆i(g) = xi
∂g

∂xi
(x1, x2, . . . , xi−1, 0, xi+1, . . . , xk).

With f0 = 1, we obtain successively

f1(x1) =
x1

1− x1
,

f2(x1, x2) =
1

1− x1 − x2

(
x1x2

1− x2
− x2x

2
1

1− x1

)
=

x1x2(1− x1x2)

(1− x1)(1− x2)(1− x1 − x2)
.

Denoting Lk(x) = f(x, x, . . . , x), we deduce that:

L1(x) =
x

1− x
, L2(x) =

x2(1 + x)

(1− x)(1− 2x)
,

L3(x) =
x3(1 + 4x− 3x2)

(1− x)2(1− 2x)(1− 3x)
, L4(x) =

x4(1 + x)(1 + 12x− 31x2 + 12x3)

(1− x)2(1− 2x)2(1− 3x)(1− 4x)
.

Proof. Use the geometric representation of paths by tableaux described in the first section. A tableau of
width k can be obtained by adding a new cell either

– at the top of a column of another tableau of width k,

– at the beginning of a tableau of width k − 1,

– or after the (i− 1)th column (of height greater than 1) of a tableau of width k − 1.

In terms of generating functions, these three cases correspond respectively to

(x1 + x2 + · · ·+ xk)fk, Λ1(fk−1), Λi (fk−1 −∆i−1(fk−1)) .
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5. Standard paths of given shape

We finally derive an expression for the number of standard paths (or tableaux) of shape (p1, p2, . . . , pk).
This number is the coefficient of xp11 x

p2
2 . . . xpkk in the series fk(x1, x2, . . . , xk) defined in the previous section.

Recall that the answer to this question, for the partition lattice, is given by the hook formula [4] [7].

To begin with, we associate to a tableau T of width k a binary tree with k vertices. This tree encodes
the order in which the parts of T are created, and only depends on the labels (a1, a2, . . . , ak) occurring (from
left to right) in the lowest row of T . The tree A(a1, a2, . . . , ak) is recursively defined as follows: for k = 0,
the tree is empty; if k = 1, the tree is reduced to one vertex, and, for k > 1, the left (resp. right) subtree of
A(a1, a2, . . . , ak) is A(a1, a2, . . . , a`) (resp. A(a`+1, a`+2, . . . , ak−1)), where ` = max {j | 0 ≤ j < k and aj <
ak}. By convention, a0 = 0. This means that the rightmost part of the tableau was created by inserting a
cell labeled ak just after the cell labeled a`, and that the parts lying between the `th and the kth part were
created later. For example, the tree associated to the tableau of Figure 1 is:

5

, Z
2
Z

1

4
Z

3

Figure 2.

Reading the tree in suffix order, we label its vertices with the integers (k, k − 1, . . . , 1) (see Figure 2). From
now on, a vertex will be denoted by its label.

Proposition 4 – The number of standard paths of shape (p1, p2, . . . , pk) with underlying tree A is:

NA(p1, p2, . . . , pk) =
(p1 + p2 + · · ·+ pk)!∏
j∈A [(pj − 2)! rj sj ]

, (7)

where

rj = −1 +

Mj∑
i=j

pi, sj =

Mj∑
i=mj

pi,

mj is the minimum label of the tree composed of j together with its right subtree, and Mj is the maximal
label among the vertices that have j in their leftmost branch. Hence, the total number of tableaux of shape
(p1, . . . , pk) is the sum of Ck terms NA(p1, . . . , pk), with Ck =

(
2k
k

)
/(k + 1) being the usual kth Catalan

number.

Example. IfA is the tree of Figure 2, then (m1,m2,m3,m4,m5) = (1, 1, 3, 3, 3) and (M1,M2,M3,M4,M5) =
(1, 5, 3, 4, 5), and the number of tableaux of shape (p1, p2, p3, p4, p5) associated to A is

NA(p1, p2p3, p4, p5) =
(p1 + p2 + p3 + p4 + p5 − 1)!

p1!(p2 − 2)!p3!(p4 − 1)!(p5 − 1)!(p2 + p3 + p4 + p5 − 1)(p3 + p4)(p3 + p4 + p5)
.

Proof. We proceed by induction on k. The statement is clearly true when k = 0 or k = 1. For k > 1, let B
(resp. C) be the left (resp. right) subtree of A. Suppose B has ` vertices. Then:

NA(p1, . . . , pk) =

(
−2 +

∑k
i=` pi

p` − 2

)(
−1 +

∑k
i=`+1 pi

pk − 1

)
NB(p1, . . . , p`−1, p`+ . . .+pk)NC(p`+1, . . . , pk−1). (8)

This identity reflects the fact that any tableau T of shape (p1, . . . , pk) with underlying tree A can be obtained
by the following procedure:

– first, build an auxiliary tableau of shape (p1, . . . , p`−1, p` + · · ·+ pk) with underlying tree B.
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The next steps will consist in transforming the last part of this tableau. Thus,

– in the last part of the auxiliary tableau, select a set L of p`+1 + · · ·+ pk labels not containing the two
minimal ones. The set L will be used to label the last k − ` parts of the tableau T being constructed;

– remove from the last part of the current tableau the cells corresponding to the labels in L.

The final result for T is obtained by adding to the current tableau k − ` columns in the following manner:

– once again, select in L a set L′ of pk+1 + · · ·+ p`−1 labels not containing the minimal element of L;

– build a tableau of shape (p`+1, . . . , pk−1) with underlying tree C, and append this tableau to the right
of the current tableau;

– the final tableau T is obtained by adding a kth part of size pk labeled in increasing order by the remaining
labels.

A careful verification shows that the right hand-side of (7) satisfies recurrence (8), with the same initial
conditions, thus the proposition is proved.

6. Résumé détaillé

Le treillis des partages d’entiers - ou treillis de Young - fait l’objet de nombreuses études, en liaison
notamment avec la théorie des représentations du groupe symétrique. Nous étudions ici un ensemble par-
tiellement ordonné voisin : celui des compositions d’entiers. Rappelons qu’une composition de l’entier n est
une suite (p1, p2, . . . , pk) d’entiers strictement positifs, telle que la somme des pi soit égale à n. Les pi sont
appelés les parts de la composition. Le nombre de parts est la largeur de la composition, et la plus grande
part est sa hauteur.

Nous définissons sur l’ensemble des compositions un ordre partiel en disant qu’une composition P couvre
une composition Q si P s’obtient, soit en rajoutant 1 à une part de Q, soit en ajoutant à Q une nouvelle part
de taille 1. Par analogie avec les tableaux de Young standard, nous appelons chemin standard de longueur
n toute suite croissante de compositions γ = (P1, P2, . . . , Pn) telle que, pour tout i, Pi soit une composition
de i. La forme de γ est la composition finale Pn, la largeur et la hauteur de γ sont celles de Pn. L’objet de
notre étude est l’énumération de chemins standard, dont la hauteur ou la largeur vérifient éventuellement
certaines contraintes.

Une bijection entre les chemins standard de longueur n et certaines permutations de n éléments nous
permet tout d’abord d’obtenir la série génératrice exponentielle des chemins standard généraux, puis celle
des chemins standard de hauteur bornée par une entier k fixé (Propositions 1 et 2). Ces séries sont con-
structiblement différentiellement algébriques au sens de [2]. Rappelons que pour le treillis de Young, la série
génératrice des chemins standard est celle, très simple, des involutions, tandis que les séries correspondant
aux tableaux de Young de hauteur bornée sont en général assez mal connues. On sait toutefois qu’elles sont
D-finies [11].

Nous considérons ensuite les chemins standard de largeur bornée. Contrairement au cas du treillis de
Young, ce problème est bien différent de l’étude des chemins de hauteur bornée. Nous donnons une formule
permettant de calculer récursivement les séries génératrices ordinaires correspondantes, qui sont de simples
séries rationnelles (Proposition 3).

Pour finir, nous nous intéressons au nombre de chemins standard de forme donnée, c’est-à-dire que nous
cherchons un analogue de la formule des équerres. Pour cela, nous associons tout d’abord à chaque chemin
standard de largeur k un arbre binaire à k sommets. Puis, nous démontrons une formule donnant le nombre
de chemins standard de longueur n, d’arbre sous-jacent et de forme finale fixés, qui prouve que ce nombre
est encore un diviseur de n! (Proposition 4).
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